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ABSTRACT

The final report documents the results of a research program designed

)o further our understanding of the physical mechanisms which control the

initiation and severity of nonlinear combustion instability in solid

propellant rocket motors.j --In particular, the investigatio' was directed

towards fincreaseii' understanding\of the-ys-ca mechanisms which influence

the triggering of instabilities by random finite amplitude events such as

tiih expulsion of motor debris out the nozzle. .. "

The first part of this report describes the formulation and solution of

the mathemeticat models of the physical mechanisms governing nonlinear wave

propagation in two phase media and the transient burning response of the

propellant to both pressure and velocity oscillations.A An exhaustive- study

was conducted to identify and incorporate the best available "shock

capturing" scheme. The recently developed sharp combination of the Lax-

- Wendroff, Hybrid and Artificial Compression schemes gives the analysis the

ability to treat the multiple shock-wave type of instabilities "that are

frequently observed in reduced-smoke solid rocket motors. Ad hoc velocity

coupling models were also incorporated into the analysis. Solutions are I

.presented demonstrating that pressure oscillations in unstable solid rocket

motors (with metallized as well as unmetallized propellants) reach the same

limit cycle (amplitude and waveform) independent of the characteristics of

the initiating disturbance.

The second part of the report describes the development of mathematical

models to describe the initial pulse produced in the chamber by several

Xi
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types of laboratory pulsers. V The combination of these models with the

chamber instability analysis resulted in a unique capability to predict both

the initial pulse characteristics and the motor response to pulsing. The

validity of the combined models was evaluated by extensive comparison

between the analytical predictions and experimental data from pulse tests

obtained (under contract) by Aerojet Tactical Systems Company. The

capability of the model to predict the observed motor stability in several

test cases was demonstrated. Furthermore, excellent agreement was also

demonstrated between the measured and predicted initial pulse amplitudes and

waveforms, the temporal evolution of waveforms, and the harmonic content of

the waves. This investigation has lead to significantly enhanced

understanding of the acoustic energy exchange processes and pulse

characteristics which lead to motor triggering.

''.4
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CHAPTER I

INTRODUCT ION

Tactical solid rocket motors are frequently subject to a combustion instability

problem at some point in the design cycle. When instability is encountered it can take

one of several forms, e.g., linear or nonlinear, longitudinal, or tangential. Over the last

twenty years, considerable resources have been expended to understand, predict,

control, and eliminate combustion instability in solid rocket motors. Most of this effort

has been devoted to linear instability problems, and as a result, such problems can now

be treated in a rational, cost effective manner. Comparatively little work has been

accomplished towards the understanding and resolution of nonlinear combustion

instability problems. Thus, when nonlinear instabilities are encountered, thu solution is

too often an expensive cut and try process.

Linear instabilities are characterized by small amplitude, sinusoidal oscillations

that originate from the amplification of infinitesimal random disturbances in the motor

chamber. On the other hand, nonlinear instabilities are usually characterized by large

amplitude oscillations having steep-fronted, shock-like waveforms. Nonlinear axial

mode instability in solid propellant rocket motors is initiated by random finite

amplitude events such as the expulsion of an igniter or insulation fragment through the

". nozzle. When instability is initiated in this manner in a motor that is otherwise linearly

stable (i.e., stable to infinitesimal disturbances) it is said to be a "triggered" instability.

The existence of triggered instabilities is a direct result of the fact that all of the

acoustic energy gain or loss mechanisms in a solid rocket motor, e.g., pressure and

velocity coupled driving, nozzle and particle damping, acoustic mean flow interactions,

etc., are nonlinear, i.e., amplitude dependent to some degree. These same

nonlinearities also ensure that a nonlinear instability will not grow without limit, hut

rather will eventually reach a limit cycle amplitude at which the net gains and losses

are balanced.

2



Nlonlinear axial mode instabilities usually result in pressure oscillations that

propagate as steep-fronted waves which are actually we:ik shock waves. The acoustic

pressure and velocity oscillations are frequently accompanied by an increase in mean

chamber pressure (usually referred to as a DC shift) and iicreased mean propellant burn

rare. This increased burn rate is thought to be primarily a response to acoustic velocity

oscillations, thus, it is often referred to as acoustic erosi ,ity.

Certain trends and characteristics of nonlinear ins ability have been documented.

*However, attempts to form generally applicable conclusions have been stymied by the

number, complexity of, and mutual interactions between the governing physical

phenomena. The ability to predict, avoid, or elirn note nonlinear instability is,

therefore, clearly contingent upon our ability to understand and model these

phenomena.

Efforts to understand and model nonlinear instability dale back to the 60's, e.g.,

References 1-3. The most recent work has been divided between so-called "exact" and

"approximate" mathematical approaches. The "exact" methods of Levine and Culick 4

and Kooker and Zinn5 seek to numerically solve the nonlinear partial differential

equnlions governing both the mean and time dependent fl:w in the combustion chamber,

ns Nell (s the combustion response of the solid propellant. The "approximate" methods

of Culick6 end Powell, et. al., 7 utilize expansion techniques to reduce the problem to

the solution of sets of ordinary differential equations. Culick and Levine8 carried out a

brief comparison of results obtained with these two approaches and found that within

corinin limits the approximate techniques yield quite reasonable results. Each of these

rnethods has certain advantages, disadvantages and limilations with regard to accuracy,

comptilotion time, generality, etc.

3



The previously developed "exact" nonlinear instability programs were not capable

of treating the multiple traveling shock wave type of instability that occurs in the

reduced and minimum smoke tactical motors that have since been developed. Nor d*d

these analyses contain a model for velocity coupling; something which appears to be

required in order to predict the types of triggering events and DC pressure shifts that

have been observed. The objective of the present research is to extend and improve the

model developed in Reference 4 to the point where it can be used as a tool to enhance

our understanding of nonlinear instability; as a means to aid in the design and

interpretation of related experimental work; as a means to evaluate the validity of

advanced combustion response models; and as a design aid to solve or prevent nonlinear

instability problems. An outline of the previously developed nonlinear combustion

instability model describing two-phase flow in variable area solid rocket combustion

chambers is described in Appendix I.

In order to reach the stated objective, the numerical techniques utilized in

Reference 4 had to be replaced by more advanced methods and a model for addressing

velocity coupled effects had to be incorporated into the computer program.

A critical investigation of the ability of finite difference integration methods to

accurately solve the one-dimensional, nonlinear, two-phase, hyperbolic, equations which

govern the propagation of shock waves in combustion chambers was conducted. Tie

extensive numerical study that was conducted and the results obtained for severol lest

cases utilizing several candidate finite difference integration techniques are described

in Chapter 2.

As mentioned previously, the older "exact" codes were not capahle of treating the

multiple traveling shock wave type of instability that occurs in reduced and rinimum



smoke motors. The capability of the modified model to accurately predict the

proparition of multiple shock waves in variable cross-sectional area rocket chambers

was examined. Results of this study are reported in Chapter 3.

The sensitivity of solid propellants to acoustic velocity oscillations parallel to the

burning surface has been known for many years. This phenomenon, termed velocity

coupling, has been observed in both motors and laboratory burners. These observations

also support the hypothesis that velocity coupling can be highly nonlinear, and that it is

the most likely cause of triggered instabilities and mean pressure shifts in solid rockets.

The development of a new improved model for velocity coupling was not considered to

be part of the present investigation. Rather, existing models were reviewed to

determine which, if any, should be incorporated into the analysis at this time.

Some of the interesting results obtained with the improved model, including the

effect of initial disturbance amplitude and wave form, combustion response, and

particle concentration upon limiting amplitude; and the ability of ad hoc velocity

coupling models to predict phenomena such as triggering and mean pressure shifts are

presented in Chapters 4 and 5, respectively.

A'.1-
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CHAP_ 1 -l 2

A CRITICAL STUDY OF NUMERICAL METHODS FOR rHL SOLUTION

OF

NONLINEAR HYPERBOLIC EQUATIONS FOR RtESONAINCE SYSTI-MS

INTRODUCTION

This chapter presents the results of an investigation to select a satisfactory finite

difference integration scheme for solving the one-dimensional, Eulerian form of the

equations describing the propagation of steep-fronted, shock-like waveforms in variable

cross-sectional area ducts and two-phase solid rocket combustion chambers. 4 The

suitability of candidate finite difference integration schemes for the intended purpose

was tested by applying them to a similar but simpler problern; that of finite amplitude

shock-like wave propagation in a closed end tube. The equations describing the flow of

gas in the tube are identical to those describing the flow in a uniform cross-sectional

area rocket motor - after deleting terms contributed by The presence of particles in the

" flow and terms describing the addition of nass moinenturn and energy by the

conbustion processes.

In order to be acceptable for the intended application, a finite dff-rence

. integration technique inust: preserve the high freauency content of the waveforrs; be

relatively non-dissipntive and non-dispersive after many wave cycles; be capable of

describinj a shock ,.wve as a sharp discontinuity; and be capable of properly trec ;ng

the reflection of shock waves fron boundaries and the partial reflection and transmis-

sion at area discontin, (ties. Moreover, the test case under consideration involves wave

steepening fron an i'.tially sinusoidal waveforn to a shock wave and, due to entropy

generation by the shock %cve, the possible return to a sinusoidal waveform after many

wave cycles. Thus, it is required that the numerical scheme have rniniinum diffusive

i""
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and dispersive errors for both shock waves and harmonic standing waves propagating for

many wave cycles. It should also be pointed out that in solving a combustion instability

problem, numerically induced pre- and post-shock "wiggles" do not just impair the

accuracy of the solution; they car lead to non-physical solutions by erroneously

"triggering" nonlinear combustion instabilities.

A shock wave is described mathematically as a surface of discontinuity with a

smooth solution on either side of the shock. The shock solution is governed by jump

conditions across the discontinuity. Since the assumption that the solution is smooth is

inherent to all standard convergence theorems for numerical schemes, it is possible 9 to

construct a solution with the wrong speed of propagation. One option to avoid this

problem is to use shock-fitting schemesl0, 11, 12 that treat the shock as an internal

boundary and calculate values across the discontinuity utilizing the Rankine-Hugeniot

relations. However, this approach is impractical for the intended application (variable

drea ducts with discontinuous area changes) due to the large number of shock waves and

contact surface discontinuities that are created by internal reflections and intersec-

tions. Similarly, finite difference schemes that are modeled after and exploit the

mathematical theory of the method of characteristics, methods such as the

scherne 3, the split coefficient scheme 4, or the psuedo-characteristics schemeI5, are

impractical for this specific test problem. Shock capturing implicit difference schemes

offer no particular advantage since the physical problem of interest typically requires

tine resolution consistent with the stability restrictions of explicit methods.

An alternative to shock fitting is shock capturing. Methods that capture the

shock do so by integrating the governing equations across the shock. The capturing

approach to the calculation of discontinuous solutions has two essential defects: I1) A

discontimity in the solution of a partial differential equation is approximated by the

-V...
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solution of a finite difference scheme which is a continuous transition connecting the

states on both sides. It has been shown 16 that when the order of accuracy of the

numerical scheme is greater than unity, overshoots or undershoots are produced upon

crossing the discontinuity. These oscillations (termed wiggles) can: induce nonlinear

instabilities when coupled with combustion; damage the accuracy of and spuriously alter

the harmonic content of the numerical solution; trigger convergence to non-physical

solutions that violate the entropy condition; 17 or generate non-physical rarefaction

shocksl8. 2) When approximating a contact discontinuity by a continuous transition,

the width of the transition grows with time as nl/(l+R), where n is the number of time

steps and R is the order of accuracy of the finite difference scheme. Thus, in order to

maintain accuracy in the neighborhood of a contact discontinuity, a finer mesh than

would otherwise be necessary is required. This can significantly increase the computa-

tional time, especiall/ in multi-dimensional calculations.

The standard cure for the first problem (wiggles) has traditionally been the

aj!dtion of crtificicl viscositv terms te the differential equations. Several types of

artificial ,isccsity methods capable of sup;rpmssing post-shock oscillations have been -"-".

developed 16, 19. However, such artificially induced diffusion also smears out the

discontinuities and dissipates the high frequency harmonics that are part of the physical ." -

solution. Moreover, the rate of energy dissipation produced by artificial viscosity can

be comparable in magnitude to the net rate of energy gains or losses in many

combustion systems. The use of an artificial viscosity also precludes any efforts to

determine the actual particulate related energy damping rate in two-phase flow

systems. APE

As a result of the drawbac-s of artificial viscosity methods, numerous investiga-

tars have sought to develop other alternatives for suppressing pre- and post-shock IW -
L, .
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osci'lations. It has been shown 17 that first order monotone schemes yield the proper

shock location and do not generate wiggles upon integrating across a discontinuity.

Unfortunately, due to their first order accuracy, such schemes are highly dissipative

and excessively smear and damp discontinuilies. An alternative to utilizing a monotone

schene 2verywhere is to use it only near a discontinuity while using a higher order

scheme wherever the solution is smooth. The hybrid scheme of Harten and Zwas 20 is an

example of such a method. Other techniques use the second order scheme (without

artificial viscosity) everywhere and then remove the oscillations by utilizing a Shuman

filter 21 or enforce monotonicity on second and third order schemes, as done by Van

Leer.
22

S everal rnethods were developed recently to deal with the smearing of the contact

discontinuitv. These inethods include Chorin's implementation of Glimm's method 2 3 ,

the F lux Corrected Transport (FCT)-SHASI A Phoenical method of Book and Boris and

linnI2 4, the Low Phase Error Flux Corrcted Transport (FCT)-SHASTA Phoenical

schemes of Boris and Book 25 , and the Artificial Compression Method (ACM) of

iorten 2h. Another recently developed schf ne 2 7 is a combination scheme consisting of

the Artificial Compression Method (ACM), .-ornbined with the Hybrid schene 2 0 and the
basic- second order scheme of Lax-Wendroff 2 8 (tlhis combination scheme is termed

L'N+H-A(M). rhese schenes were combined to yield oscillation-free, sharp transitions

of discontinuities while maintaining a high order of truncation error wherever the

solotion is snooth.

A starting point in the selection of the best available numerical scheine for this

tf-t c-ise .vns an ex-,l!('it review paper by Sod. 2 9  Sod tested several numnerical

sc-hermes for tihe shock t, )i) test cose. 1i-s results dernonstrcited the superiority of the

." iv(1,m'ed" ,r, .thoIs s js m the -FCT or A('CM schemes, ovr the "bisic" second order

,,9
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schemes of ax-Wendroff or MacCormack. It had been shown that the "basic" schemes

generated spurious wiggles upon crossing the discontinuity. Nevertheless, it h~ns been

noted by Turkel 30 (in another excellent review report) that "it is not clear whether one

needs to remove these oscillations except for aesthetic reasons. This seems to be

problem dependent. For problems with combustion, it is imperative to prevent

oscillations which falsely trigger the combustion process. . . . for dynamic situations,

the situation is not clear." The objective of this study was to clarify this situation,

complementing Sod's work, and to evaluate the relative accuracy of the candidate finite

difference integration schemes for problems describing shock wave propagation over

long periods of time (as compared to 20 to 30 time steps as done by Sod), i.e., to

determine whether initial wiggles are just an aesthetic imperfection, or if they yield

physica:ly erroneous solutions.

For the following reasons, the random choice method of Glimm, implemented by

Chorin 2 3 , was not evaluated. This technique is difficult to implement, as it

necessitates the evaluation of the location of the sample point with respect to the slip

line, socks, and rarefraction waves (8 options altogether). This poses an extremely

difficilt problem, especially when there are several shocks and rarefraction waves

traveling and interacting inside a variable area closed end tube (or rocket motor) for

many wave cycles. Furthermore, additional developments and applications of this

scheme utilizing random sampling 31 or Van der Corput sampling 32 indicate that though

the shock itself is captured over two or three grid points, the location of the shock is

often wrong. An hybridization of Glimnm's method with Godunov's method 3 3 , vhcme

Godunov's method is utilized at the vicinity of the discontinuity, resulted in the right

P..- shock location. However, the shock resolution can be only as good as obtained by

i* Codunov's method, and hence, the shock discontinuity is captured over 4-S grid points.

1
." 10
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iI lhe results (either reported in the original papers, Sod's paper, or results of tests

c-ondu~cted by us) for the shock tube problem, utilizing the upwind second order

differe~nce scheine3 4~, or implicit variations of this scheme comnbined with central

spotiol differencing, or olternating explicit upwind3 5 combined with MAac~orrack

';ce~ es~indicated that these schemes cannot yield results that are as good as those

ohtoined !by the FCT or the ACM type schemes for this test case. For the saine

rewsonis, the psuedo-chnracteristic method of Carver 15, the -schemne of Vioret i I 3,

the Split C',oefficient scheme 14, and the ?JpstrearnCentered Finite Difference schemes

* Of Van Lepr-3 7 , were not tested. Van Leer's second order sequel method to Godunov's3 3

is (n Lojraingian scheme that was considered unduly complicated for practicol applica-

tions, especially in view of the results presented for the shock tube problem; results

that (ire qlood, hukt no ;hett,-r than the mnuch simpler FCT or ACM schet nes.

lh - numerical schemes tested in combination with the current test problem of

fini tf, amplitud(e propaglation ini a closed end tube were: the first order schemne of

!,( s(irjov 39, IJus)aov's mnethod combined with artificial comnpression, the "standard"

S;(WO!11d order schemnes of Lax-Wendroff 28 , Rubin and Burstein5 8 , and VacCormnack 3 r')

th-~ hybrid sch'-'me of Harten anid Zwas20 , the Flux Corrected Transport (FCT) SHASTA-

IPhot-nicol of liook, ' oris, and Hamn2 4 , the FCT-SHASTA-Phoenical Low Phase Error

(I-PI ) of ioris (ind I (_ook 2 5, H-yman's predictor-corrector 2 9 , anid Harten's Comnbination of

the Artificial C-oipression Method (ACM), Hybrid and Lax-WNendroff scheines.2 7

It) order to foci Ii lte the evaluaition of tie di ffuisive and dispersive errors of tie

di ffer-tt nut npricnl schem nes tested, the results of the test problems were spectrally

a' HI-1-(. Yie the pressuire-I imne his tory calcuilated at anv locaition along the tube 7s

%'I I' ir to the, pre-sm re-I irno do to that wouild have been tnJea]Sured by a pressure

rim s' 1 rr 11) m ( it tj vi t Sptitinl lnat ion it (it)nac tia test, nn existing spectril



analysis capability was utilized. This program was originally developed to perform a

spectral analysis of the data measured by a pressure transducer attached to a solid

rocket motor case during motor firing. The accuracy of the spectral analysis program

is within 1_2%.

WAVE PIOPAGATION Itl A CLOSED TUBF_

Basic Equations:

The one-dimensional, unsteady, inviscid, Eulerian form of the nonlinear hyperbolic

- equations of gas dynamics can be written in conservation form as follows:

Continuity a-P-- + *) =o0 (I)
_t apx

Momentum P iU + a(p+pu) = 0 (2)
at ax

Energy +t P + -. +-)j+ + 0 (3)

Equations (I) through (3) may be written in a vector form as:

F-t + G(F) x  0 (4)

PP

where
F pu G P + Pu2

CT u2 uCpT u

(P + ~L)OU(-P +
P y 2 Y

12



Boundary Conditions:

The boundary conditions at both ends of the closed tube are those , a rigid wall,

i.e., u = 0. The rneth)d of characteristics was utilized to obtain solutions ni the

boundary poinis. Curren ly, a simple Euler integralior along the characterist;(s I ised.

Initial Conditi)ns:

The geo neiry and unperturbed conditions for the test problems were as .oilows:

tube length 1.22 meter (48 inches), pressure 6.895 MPa (1000 psi), termnerature

3488.3 0K (62790R), Y=1.22. The transient solution was initiated by perturbing the

steady siate with a first longitudinal standing wave disturbance (correspondir.-C to n

frequency of 326 Hz) having an amplitude of 20 percent of the mean pressur-. T ,e

initial perturbed density and temperature were calculated using isentropic r,.:'ficnns

while the vehcity remained unchanged. The chamber is divided into 50 equalt" ivnc-1

inlervnls usinq 51 grid points. All the schemes were tested at a Coirant numr (7.",

equal to 0.6. This number was chosen for three reasons: (I) Owing to wi,

variation of the mean flow inside a rocket motor (as in most flow systems), one 'ii 'o

deal with areas of different velocities, and, hence, different Courant numbers (' -'.

varying from 0.3 to close to one); (2) Since each numerical scheme has a , rqql

number at which the results are best, operating at that Courant number woult ,.or

that specific scheme. Operating at Cn = 0.6 seems to be a fair region with resp--I to

aill scherne,; (3) Sometimes it is necessary to choose a smaller computational n,. :

certain parts of the system having large gradients (as happens in nozzles, for oxnr'n-t.

thus forcinq the utilization of a low Courant number in regions of iarge arid .. '.. A

testing at n - 0.6, a value in the middle of the expected operatinq roge, ,

eit r ('valuiation of the schemes at Cn other than the one most suitable for th, ,o,-ific

13
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Fig. 1. Repeated shocked sound wave.
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scheme used. Other solutions were obtained at higher and lower Courant numbers to

confirm that the conclusions regarding the relative merits of each scheme are valid in

general. Whenever the resulHs obtained at different Courant numbers differed

siqnificantly from those obtained at Cn 0.6, they are presented and discussed.

Exacl Solution:

An analysis of finite amplitude sound pressure wive propagation in an unbounded

o medium, neglecting the effects of viscosity and heat transfer, is described in Reference

40. Since the speed of propagation is dependent upon the local temperature, different

portions of the wave will travel with different speeds, resulting in wave steepening. It

is shown that a finite amplitude waveform will reach a stable sawtooth-like shape,

referred to as a shocked sound wave or a repeated shock wave, as shown in Fig. I. Once

the waveform reaches this sawtooth-like shape, effects of entropy production in the

fluid duje to passage of the shocked wave (when neglecting the effects of viscosity and

heal transfer) will attenuate the shocked sound wave, but its shape will not be

- distorted. Nevertheless, when the amplitude reaches a very low level such that

nonlinear wave steepening effects are more than checked by diffusion, the sound wave

can no longer maintain its shocked state and will eventually reduce to an harmonic

waveform. A spectral analysis of the sawtooth-like waveform (done by Fourier Series

representation of the wave) indicates that energy contained in the higher modes falls as

I/n 2 with respect to the energy contained in the fundamental mode (where n is the

mode number). The calculated (based on the exact analysis) amplitude decay rate

corresponds very closi-ly to those calculated utilizing the FCT or ACM schemes (which

will he shown later).

15
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RESULTS

Figure 2a shows the time evolution of pressure oscillations at an end of the tube,

obtained by utilizing MacCormack's method. Wave steepening, shock formation, and

shock amplitude decay with time are evident in this figure. Expanded views of the

pressure oscillations at the end of the tube between nondimensional times of 0 to 10,

20 to 25, and 50 to 55 are shown in Figs. 2b to 2d, respectively. The appearance of

wiggles after the wave steepens is shown in Fig. 2b. The time evolution of these

wiggles into discrete humps in the waveform is shown in Figs. 2c and 2d. The absence

of the higher harmonics is indicated by the discrete humps in the waveform. These

figures demonstrate that wiggles are not just a distracting aesthetic phenomenon, but

given enough time, develop into an erroneous solution. It should be noticed that the

number of discrete humps reduces with time.

Figures 2e through 2g show the time evolution of Power Spectral Density as a

function of frequency. It is shown that at the nondimensional time interval of 10 to 20

there is an erroneous amount of energy in the eighth to tenth harmonics. At a later

time interval (nondimensional time 20-30), the location of this erroneous energy

reaches the sixth to eighth harmonics and finally (nondimensional time 50-60) reaches

the fourth to sixth harmonics. The energy in modes higher than the one at which

erroneous energy is located vanishes rapidly due to large numerical dissipation. The

pressure solution with a number of discrete humps is similar to classical solutions

obtained by utilizing a truncated Fourier series representation.

Figure 2h shows the time evolution of accumulative Power Spectral Density as a

function of mode number for this test case. It is shown that the erroneous high energy

is moving from higher to lower modes with time and that the percentage of energy in

16 . -o
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Fiq. 2a Time evolution of normalized pressure oscillations at an end of the
chamber (VacCormack).
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P1 
PPH

0 10 20 25 50 55

N. 0. TIME N. 0. TIME N.D. TIME

Figs. 2b-d. Expanded views of the normalized pressure oscillations at an
end of the chamber (MacCormack).

PSD (e) T = 10-20 PSO (f) T = 20-30 Pso (g) T = 50-60

32 12.8 1.28

241 9.6 096

16 6.4 0.64

8 3.2 0.32

0- A , AA 0.0 - 10.0-
FREQUENCY FREQUENCY FREQUENCY

Figs. 2e-g. Time evolution of Power Spectral Density as a function of
frequency (MacCormack).
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the fundamental mode goes down with time. This constitutes a numerical error since

energy transfer among modes happens only as the shock is formed, when energy is

transferred from the fundamental mode to higher modes due to wave steepening. Once

the shock is formed, no further waveform changes or energy transfer between modes

should occur. Moreover, there are no known physical processes present in the system

thut con cause a transition of energy from a higher mode to a lower mode. Thus, the

observed energy transfer from higher to lower modes is a numerically induced

phenomena that relates to the truncation error. The tirr e variation of the accumulative

power spectrum results from the combination of dissipative and dispersive errors of the

numerical scheme, where the dispersive ,orrors cause pressure signals to travel at the

wrong speed, while the dissipative error causes over-attenuation of the high frequency

nodes.

To examine the effect of Courant number on the dissipative and diffusive errors

of the MacCorinack scheme, the test case was *repeated at several Courant numbers

ranjing frofn a high of Cn = 0.98 to a low of C n = 0.2. Spectral analysis of the results

obtained with Cn = 0.98 indicates that the initial erroneous energy is contained in the

15 and 16 harmonics. At the nondimensional time of 50 to 60, the erroneous energy is

contained in the seventh to ninth harmonics, each containing more energy than the

fundamental mode itself (as shown in Fig. 2i). Results obtained with Cn = 0.3 indicate

that the initial error appears in the seventh to ninth harmonic- at the nondimensional

time of 50 to 60, the fourth harmonic contains significantly more energy than the

fundamnental node (as shown in Fig. 2j). In this connection it should be mentioned that

n decreose in Courant number results in more high harmonic energy dissipation.

! x ninmtion of the itnplitude of the last computed waveform (nondimnensional time 58

to 00) indicates that the maximum goes down with Courant number from a value of 13%

of the neon pressure with Cn 00.98, to 1% at Cn 0.8, to 9% at Cn 0.6. The

19
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Fig. 2h. Time evolution of accumulated Power Spectral Density as a
function of mode number (MacCormack).
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Figs. 2i-j. PSD as a function of frequency (MacCormack): (i) Cn = 0.98,
(j) C = 0.3.
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,naxirnun amplitude value then goes up with further decreases in Courant number, to a

valuie of I 1% nt Cn : 0.4. and 13% at Cn = 0.2.

. A linear analysis of the dispersive and dissipative errors of the MacCormack

scheine as a function of Courant number was conducted in Reference 34. It has been

shown that for all Courant numbers, both the dispersive and dissipative errors (per tine

step) increase with frequency. Dissipative errors increase with increase of Courant

nunber fron 0.1 to about 0.6 and then decrease. Dispersive errors decrease with

increase of Comrant number. These results, although obtained by linear analysis, are in

excellent cgreement with the results obtained for this nonlinear test case.

The results obtained utilizing the classical second order scheme of Lax and

Wendroff ore shown in Figs. 3a through 3 j. Figure 3a shows the time evolution of

pressure )scillations (it an end of the chamber. Expanded views between

nondimnens'onal time intervals of 0 to I10, 20 to 25, and 50 to 55 are shown in Figs 3b,

3(, and 3d. respectively. It is shown that the initial post-shock oscillations develop in

time into number of discrete humps. The number of humps goes down with time until,

at a nondimensional time of 60, there are only 4 humps. The spectral analysis, shown in

Figs. 3e, 3f, and 3g for the nondimensional times of 10-20, 30-40, and 50-60,

respectively, clearly demonstrates the erroneous transfer of energy. Initially, there is

excessive energy at the tenth and eleventh harmonics. This energy propagates towards

the lower !iur~nonics ntil, at the end of the solution, it is shown that there is a

significant anount of excessive (erroneous) energy in the fourth to sixth harmonics. It

should be noticed that initially ?9% of the total energy is contained in the first I5

hirnanics. Towards tie end of the solution, however, that sane percentage of energy

is contoined a tho first seven harmonics, while the energy contained in the harnonics

b av,- th, eighth !a; been totally dissipated. Figure 3h which portrays the time

21
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Figs. 3b-d. Expanded views of the normalized pressure oscillations at an
end of the chamber (Lax-Wendroff).

PSO (e) T 10-20 PSo (f) T 30-40 Pso (g) T =50-60

32 6.4 1.6

24 4.8 1.2

16 3.2 0.8
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0- 0.0-iA 0.0 -d
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Fiqs. 3e-g. Time evolution of PSD as a function of frequency (Lax-Wendroff).
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variation of the accumulative PSD as a function of the respective harmonics, clearly

demonstrates the erroneous energy transfer and the dissipation of energy in the higher

harmonics.

An investigation was conducted to examine the effect of variations of Courant

number upon the dispersive and dissipative errors of the Lax-Wendroff scheme. Figures

31 and 3j show the time evolution of pressure oscillations between the nondimensional

time intervals of 0 to 10 and SO to 60, respectively, obtained with Cn = 0.98. Except

*for a single overshoot, the solution is almost perfect, as indicated by both the pressure

data and the spectral analysis results.

Wiggles appear in the solutions at Courant numbers lower than 0.94. As Courant

number is reduced, the location of the erroneous energy shifts to a lower harmonic.

* Thus, for instance, at the nondimensional time interval S0 to 60, the erroneous energy is

located at the sixth and seventh harmonics with Cn = 0.8, fourth and fifth harmonics

with Cn = 0.6, fourth harmonic with Cn = 0.4 (about the same energy in the fundamental

and the fourth harmonics), third and fourth harmonics with Cn = 0.2 (with significantly

more energy in the fourth harmonic than in the fundamental mode), and third harmonic

with Cn = 0.1 (with equal amounts of energy in the first and second harmonics and

significantly more energy in the third harmonic). It should be noticed that th,'

*amplitude of the last computed waveform (nondimensional time 58 to 60) changes very

little with Courant number, in contrast to the results obtained with MacCormack's

scheme.

The results obtained utilizing the Lax-Wendroff and Rubin and Burstein schemes

are, as expected, very similar. Moreover, the results obtained by these schemes are

similar to the results obtained by utilizing MacCormack's scheme. A comparison of the

24
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Fig. 3h. Time evolution of accumulated PSD as a function of mode number
(Lax-l-endroff).
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Figs. 3i-j. Time evolution of normalized pressure oscillations at an end
of the chamber (Lax-Wendroff).
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results indicates that: (I) The first post-shock wiggle appears after the third wave

cycle (LW and RB) when the wave is fully shocked, compared to the second wave cycle

(with MacCorrnack) when the wave front is steep, but not yet fully shocked; (2) The

percentage of energy (or Power Spectral Density) contained in the fundamental mode is

higher, and the excessive high energy in the higher modes is somewhat lower with the

Lax-Wendroff and Rubin and Burstein schemes.

All of the earlier methods, i.e., MacCormack, Lax-Wendroff, and Rubin and

Burstein were utilized without adding artificial viscosity. The addition of an artificial

viscosity term to a numerical scheme was conceived as a way to damp post-shock

oscillations. Artificial viscosity does reduce post-shock oscillations, but at the expense

of the higher harmonic components of the waveform. The effect of an artificial

viscosity on the solution over many wave cycles was explored using Hyman's Predictor-

Corrector scheme (as described by Sod 2 9). This technique demonstrated poor results

for the shock tube tests and was utilized here only to demonstrate the effect of varying

the amount of energy dissipated through artificial viscosity. Results obtained utilizing

this method with a high value of artificial viscosity (6 equal unity in Hyman's method)

indicate that high artificial viscosity prevents a shock from ever forming and the

deviations from a perfect sine wave are never large (as shown in Fig. 4). Spectral

analysis of this solution shows a complete absence of higher harmonic content.

Initially, only the first three harmonics are excited while at a nondimensional time of

60, 99% of the energy is contained in the fundamental mode. Reducing the artificial

viscosity coefficient ( 6 = 0.3, the lowest value at which Hyman's method remcins

stable) yields a much steeper waveform, but one whose higher harmonic content is still

less than it should be (as shown in Fig. 5). Initially, fifteen harmonics are excited, but

only the first six harmcnics remain excited after 30 wave cycles. As time increases,

the action of the artificial viscosity continues to preferentially damp the higher

harmonics causing the solution to further degenerate.

26

". ' " "- ' '- . . "- ' "- *. " , .' " ." * '-.. " "- - .* -" "," " •* "" " '5"*'-"" "



a-

CL

C.
Q

100.20 
4 O

0 
20 ~ ~ 30 4 06

NONDIMENSIOMAL TIME 
6Fig* 4, Time evolution of normalized pressure s~~t~r 

ta edo h

chamber (H-yman, 6 
Os i la.0)a n n o h

0.20

C

m 0.10

a.

&,.0.00

22



Another scheme that utilizes artificial viscosity to damp pre- and post-shock

oscillations is the first order scheme of Rusanov. The results obtained by applying this

scheme are strongly dependent on the ratio of .w/Cn where Cn <I and W is the

artificial viscosity coefficient. Figure 6a shows the results of applying this scheme

with " /C n = 1, where Cn = w = 0.8. A wiggle appears in the solution after the shock

formation. Nevertheless, due to energy dissipation by the artificial viscosity, the

wiggle does not develop into a set of discrete humps. The spectral analysis of this case

shows that initially as many as 18 harmonics are excited, with erroneous energy

contained in the twelth to fifteenth harmonics. Closer to the end of the run the

excessive energy has propagated to the seventh harmonic and energy contained in the

twelfth and up harmonics had been totally dissipated.

Figure 6b shows the results of applying Rusanov's scheme with W /Cn .I11,

where Cn = 0.8. The first post-shock wiggle appears after 4 wave cycles, however,

between nondimensional times 40-60 there are no wiggles present and the waveform,

although steep, is not in the shocked state. The spectral analysis of this case indicates

that initially there is very little excessive energy in the eleventh and twelfth modes,

while up to 17 modes are excited. As time progresses, artificial viscosity continu.usly

dissipates the energy in the higher modes until finally, at the nondimensional -ime

interval of 50-60, only 8 modes are excited.

Figure 6c shows the results of applying Rusanov's scheme with an W/Cn ratio of

1.45, and Cn = 0.8. Excessive energy dissipation through artificial viscosity prevents

the shock from ever fcrmning and the deviations from a perfect sine wave are just slight.

Spectral analysis of this case indicates that initially only the first ten harmonics are

excited, while after the nondimensional time of 22, only the first one is excited. The

amplitude values reached by the waveforms at the nondimensional time of 60 as a

28
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function of w/C n were tabulated. Analysis of these results indicates that the
41. .. %

amplitude is proportional to the ratio w /Cn to the power of 2.2163. It is concluded that l'
V

by fine tuning the ratio of w/Cn (possibly in the region 1.1 I< w/Cn 1.25), it is possible i
V % IN

to achieve optimum steepening without generating wiggles. Nevertheless, since the

spectral analysis of even the best solution (with w /Cn of 1.111) indicates excessive

damping of high modes by the use of artificial viscosity, this optimum solution cannot

be as good as the solution obtained by the FCT or ACM type schemes (as will be shown -

later) that preserve the high frequency content of the waveform. In this connection it ..

should be noted that Sod 2 9 has shown that results obtained for the shock tube problem .

with Cn 0.9, u,= 1.0, and /Cn I. I1I are quite poor and that the addilion of .

artificial compression resulted in greal improvement. Figure 6d shows the results for a

similar test (Rusanov and ACM) with Cn 0.83, u 1.0, and u/C n  .17. This -t- ,,o

was chosen in accordance with the above study (i.e., optimum region of operation). A

wiggle that appeared in the solution after shock formation disappeared at later times,

as was the case with the Rusanov scheme iself. The waveforms between

nondimensional times 50 and 60 are siqnificantly steeper than with Rusano%,'s scheme

without artificial compression. The spectral analysis data indicates that the addition

of ACM resulted in the initial excitation of more higher harmonics (25 modes were

excited with ACM compared to 17 without ACM). In addition, despite energy

dissipation from the higher modes due to artificial viscosity, the first 20 harmonics are

still excited towards the end of the test, resulting in a steeper waveform.

Monotone schemes are known 30 to capture shocks without overshoots and to yielI

the correct shock location. Unfortunately, linear monotone schemes are only first ."

order accurate. An improvement, suggested by Harten and Zwas 2 1 was to form a

hybrid difference operator which combines the classical second order LaxWendroff 2 I_

schem~e with a first oroetr :niyioio )C sc1rnc. irsl oraier inonotonic L,-t~eine Is
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activated on.y in tie vicinity of admissible discontinuities while the second order

scheme is applied to the smooth portion of the flow. Nevertheless, it is recognized

that the first order accurate monotone scheme produces excessive smoothing of the

shock (i.e., excessive energy in the low frequency modes).

The results obtained utilizing this hybrid scheme are shown in Fig. 7. Figure 7a

shows the time evolution of pressure oscillations between nondimensional times 0 and

60. It is shown that a shock is formed after 3 wave cycles, and that the waveform

remains steep throughout the duration of the solution. The spectral analysis data

indicates that initially the first 25 harmonics are excited, while towards the end of the

test, only the first 8 harmonics remain excited. The time variation of the accumulative

percentage of Power Spectral Density (PSD) contained in the respective harmonics for

this scheme (shown in Fig. 7b) indicates that there are no erroneous shifts of power

spectral density among the high order modes. Nonetheless, since the scheme is based

upon transfer to a linear (first order accuracy) scheme at shock transitions and contact

discontinuities, the lower harmonics contain more energy than should have actually

been there (for instance, the fundamental mode contains 70 percent of the total

energy), and the energy in the higher modes has been excessively dissipated (99.3

percent of the total energy that was initially contained in the first 15 harmonics is

finally contained at the first six harmonics).

Figure 7c shows the dependence of the accumulative PSD upon Courant number

and the number of grid points. It is shown that dissipation of energy due to diffusive

errors increases significantly as Courant number decreases (as shown by the increase of

energy contained in the lower harmonics). Conversely, (as should be expected, due to

the first order accuracy ef the monotonic scheme), it is shown that the energy

dissipation due to diffusive errors decreases with an increase in the iiumber of mesh
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points. With 93 points, at least 18 harmonics remain excited towards the end of the

test. An expanded view of the time evolution of pressure oscillations between

nondimensional times 50 to 60 (obtained with 93 mesh points) is shown in Fig. 7d.

Excellent shock resolution is demonstrated. In this connection it should be mentioned

that the excellent shock resolution obtained with 93 mesh points, combined with a

significantly reduced high frequency energy dissipation yields a much better

approximation to the exact solution. Indeed, the energy distribution among modes

obtained with 93 points is very similar to the energy distribution obtained with the

combination scheme of Lax Wendroff, Hybrid and Artificial Compression Method (as

will be presented later).

The first of the Flux Corrected Transport (FCT) Schemes tested was the FCT-

SHASTA-Phoenical scheme, developed by Boris, Book, and Hain. 2 4  This method

combines the two step Lax-Wendroff scheme with antidiffusive correctors that contain

higher order terms which are subject to a limiting routine in order to preserve the

monotonicity of the provisional results. Following Sod 29 , the variable diffusion/

antidiffusion coefficient n was set to 0.125.

Figure 8a shows the time evolution of pressure oscillations at an end of the tube

between nondimensional times 0 and 60. The expanded view of the pressure oscillations

between nondimensional times 20 to 30, and 50 to 60 are shown in Figs. 8b and 8c,

respectively. It is shown that the small initial pre-shock error develops with time into

a pre-shock wiggle. Moreover, there is an observed curvature in the center of the

expansion wave, instead of the anticipated straight line. The shock itself is captured

over 4 grid points, even after 5260 time steps (30 wave cycles).
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rig. 7d. Expanded view of the normalized pressure oscillations at the end
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Fig. 8a. Time evolution of normalized pressure oscillations at an end of the
chamber (FCT-LW).
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The time variation of the accumulative power spectral density as a function of the

respective harmonic indicates that after the shock formation, there is a slight decrease

in the percentage of energy contained in the fundamental mode and a slight increase in

the percentage of energy contained in the second to tenth harmonics, while the

percentage of energy contained in the higher harmonic (above ten) has somewhat

diminished. In addition, this data shows that there is initially some excessive energy in

the 8th and 9th harmonics, that propagates towards the end of the run to the 7th and

8th harmonics. In this connection, it should be mentioned that variations of the energy

content above the seventh harmonic are within a quarter of a percent, which is within

the error limitations of the spectral analysis program.

Overall, the FCT-SHASTA-Phoenical scheme yielded good results for these test

conditions. However, when this scheme was utilized to solve the same problem with

initial disturbances of higher amplitudes (0.4 and 0.6 of the mean pressure instead of

0.2) the scheme yielded erroneous results. Figures 8d and 8e show the expanded views

of the time evolution of calculated pressure oscillations between nondimensional times,

20 to 30 and 50 and 60, respectively, in response to a fundamental mode disturbance

with an amplitude equal to 40% of the steady pressure. Figures 8f and 8g show the time

evolution of pressure oscillations between nondimensional times 20 to 30, and 50 to 60,

respectively, for an initia; disturbance with an amplitude equal to 60% of the steady

pressure. These figures show the development of a small imperfection at the center of

the expansion wave to either a wiggle, or, for the higher amplitude cases, to a second

shock. Analysis of the spectral data indicates only minor changes in the energy

distribution among the modes as a function of time, such as a slight energy increase in

the fundamental mode and slight energy decrease in the higher harmonics. These minor

changes presumably cause the distortion observed in the waveform.
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Figs. 8b-c. Expanded views of the normalized pressure oscillations at an
end of the chamber (FCT-LW).
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Fig. 8d-e. Expanded views of the normalized pressure oscillations at an end
of the chamber (FCT-LW, APO OAT)
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Figures 8h and 8i show expanded views of pressure oscillations between

nondimensional times 20 to 30, and 50 to 60, respectively, obtained with Courant

number of 0.6, 93 grid points and an initial disturbance amplitude of 40% of the steady

pressure. A comparison with results obtained with the same initial disturbance

amplitude for the standard test case (i.e., Cn = 0.6, 51 grid points) indicates that both

solutions have a curved expansion instead of the straight line expected from the

analytical solution of an N wave). However, the solution obtained with 93 grid points

indicates that a numerically induced shock is formed at the center of the expansion

wave. The steepening process of an initial error into a second "shock" wave is of great

interest. The initial slight "wiggle" is treated by the numerical scheme as an adverse

density gradient (or as a compression wave) and thus it acts to steepen it. The density

gradient increases until it becomes large enough to be treated by the system as a

discontinuity. This process of "artificial steepening" is very similar to the steepening

process observed when utilizing a numerical combination scheme that incorporates

artificial compression. The addition of artificial compression was conceived as a way

to steepen shock transitions that were smeared by the first order monotonic schemes.

Unfortunately, most of these combination schemes treat any arbitrary disturbance with

a high enough density gradient value as a shock and will steepen it.

The FCT-SHASTA-Phoenical Lax-Wendroff scheme was also tested with several

Courant Numbers varyirg from 0.3 to 0.85. With Courant number of 0.85 the initial

'" single pre-shock wiggle develops into a series of wiggles (as shown in Fig. 8j). In

contrast, the results at Cn = 0.3 indicate no pre-shock wiggle; rather, a post-shock

wiggle appears in the solution (Fig. 8k).

In conclusion, it has been shown that FCT-SHASTA-Phoenical Lax-Wendroff

scheme yields very good res'-Its for low amplitude disturbances, but yields erroneous

* results for high amplitude disturbances, when calculated over many wave cycles.

40



)(g)

P1 P1

20 30 50 60

N. 0. TIME N. 0. TIME

Figs. 8f-g. Expanded views of the normalized pressure oscillations at an end
of the chamber (FCT-LW, AXP = O.6P).
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Figs. 8h-i. Expanded views of the normalized pressure oscillations at an end
of the chamber (FCT-LW, APo = .4P, 93 grid points).
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The second of the Flux Corrected Transport schemes tested was the FCT-

SHASTA-Phoenical Low Phase Error 25 (FCT-LPE). This scheme minimizes phase

errors (i.e., dispersive errors) instead of minimizing diffusive errors. The rationale for

this modification is: diffusive errors generally affect the high frequency content (i.e.,

short wavelength) rather than the low frequency content (i.e., long wavelength). Since

the high frequency modes usually also suffer the mosi dispersive errors, damping of

those modes may actually reduce the overall error. The importance of reducing phase

errors is enhanced when the velocity is predominantly in one dir,,ction (as happens in a

rocket motor). For the square wave test case, 2 5 this scheme demonsTrated the best

results of all the FCT explicit schemes developed to that date.

Figure 9a shows the time evolution of the oscillatory pressure amplitude al an end

of the tube obtained by utilizing this scheme. The expanded view of pressure

oscillations between nondimensional times 50 to 60 (shown in Fig. 9b) indicates th,3i 1he

initial pre-shock error develops in time into a pre-shock wiggle. It should be noll-ed

that the initial shock transition is not sharp, but rather is rounded and becomes even

more rounded with time, indicating attenuation of energy in the high harmonics. An

analysis of the spectral data indicates that: the percentage of energy in the

fundamental mode is higher than with the FCT-LW scheme, and that the second through

eighth harmonics have slightly less energy; less modes are initially excited than wilh

the FCT-LW scheme; the attenuation of energy in the higher modes is faster: and thnt

the enerqy in some higher modes (13 and above) had actually been dissipated altogeIher.

The results obtnined by ulilizing this scheme to solve the same test problem with

higher initial disturbaince pressure amplitudes (0.4 and of 0.6 of the steady pressurea) ore

very similar to those obtained with the FCT-SHASTA-Phoeni,-al scheme, except for the

addition of a pre-shock wiggle. Similar conclusions are drawn with respect io th-
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results obtained w;th lower Courant numbers (and 51 grid points) or with 93 grid points

(and Cn = 0.6). Ilistead of the expected improvement that should have resulted from

reducing the spatial mesh size, the results for this test case (93 grids, Cn = 0.6, PoJ

0.2P), shown in Fig. 9c, indicate significant errors developing along the rarefaclion

wave. In conclusion, it seems thai for this specific application and this test case

conditions, the results obtained by this scheme are actually worse than the results

obtained by the FCT-LW.

The last scheme tested was a combination of the Arlificial Compression Method 2 7

with the Hybrid20 and the Lax-Wendroff schemes2 8. This combination method involves

two steps; in the first step the second order Lax-Wendroff scheme is hybridized with

the nonoscillatory first order accurate method as described previously, to allow a

monotonic (i.e., nonoscillatory) transition across admissible discontinuities. In ihe

second step, an artificial compression correction is applied to sharpen transitions of

dis-ontinuities (i.e., restore the energy contained in the high frequency modes), since

the hybridized first order accurate method is too dissipative. A switch value based

upon flow gradients (density gradients were used herein) is utilized so that the artificial

compression and the first order monotonic schemes are activated only in the immediate

vicinity of admissible discontinuities. This combined method preserves the second order

truncation error of the Lax-Wendroff scheme in smooth regions of the flow and yet has

the potential to yield nonoscillatory transitions of both shocks and contact

discontinuities (due to the monotone scheme that is activated at the transition regions).

In this connection, it should be mentioned that stability considerations restrici this

combined scheme to Courant numbers below 0.85. (Further details on this scheune are

presented in Appendix 2.)

Figure i0Oa shows the time evolution of pressure oscillations at an end of the tube

between the nondimensional times of 0 and 60, obtained by utilizing the LW + H ACM
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scheme, with a switch value of 0.0002. The expanded views between nondirnensional

times 20 to 30, and SO to 60 are shown in Figs. lob, and 1Oc, respectively. Nto erroneo s

wiggles or oscillations are excited at any time before or after the shock. Ninety-five

percent of the shock amplitude is captured over three grid points, even after several

thousand time steps. The spectral analysis for this case indicates that (similarly to

.what has been shown with the FCT-SHASTA-Phoenical scheme) the percentage of

energy in the fourth to eighth harmonics grows slightly with time. However, in thisrI
case, this growth is not acconpanied by dissipation of energy in the higher (above

eighth) harmonics, but rather by a slight decrease in the percentage of energy contained

in the first to third harinonics. The time evolution of the Power Spectral Density as a

function of mode number (shown in Fig. 1Od) indicates that once a shock is formed, the

,Cwstic energy distribution among the nodes tie. little with time. These results are

i, ,-cellent agreement with the analytical solution (presented previously) for an N

wave.

The switch value responsible for the transition fron the Lax-Wendroff to the

H'b/-id + ACM combination was chosen to be 0.0002. In order to demonstrate that the

choice of switch is not limited to a very narrow range, the test was repeated with

values of 0.002 and 0.00005. The results obtained in all these tests were identical,

indicating the insensitivity of the results to variations in the switch value.

Results obtained with an initial pressure disturbance amplitude of 0.6 of the mean

pressure are indistinguishible (qualitatively) froin results obtained for the standard test

case. Results obtaine I at low Courant nuimbers (around 0.3) show increased dissipation

of the high harmonic content (a problem inherent to the basic Lax-Wendroff scheme)

that result in roundingj of th- shock top. Nevertheless, 95 percent of the shock is still

captured between 3 grid points.
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In contrast to the results obtained with the FCT schemes, excellent results are

obtained with 93 grid points (Cn = 0.6, LP'= 0.6P), as shown in Fig. 10e. The shock0

remains sharp and oscillation-free even after 11,000 time steps. Spectral analysis data

indicates that at least 25 harmonics were excited. In addition, no detectable temporal

change was observed in the percentage of energy contained in any of the harmonics.

An additional testimony to the shock capturing capability of the Lax-Wendroff,

Hybrid and Artificial Compression combination schemes is shown in Figs. 10f and 10g.

Experiments were conducted (more details are given in Part 2) in which closed tubes

filled with nitrogen at room temperature were pulsed by a piston pulser attached at one

end. The pressure oscillations in the chamber excited by the piston pulser feature a

very fast rise and decay. The nonlinear combustion instability program (Appendix I) was

modified to model the effect of fore-end pulsing. The predicted spatial evolution of

pressure waves in the first half wave period is shown in Fig. 1Of. The very fast rise and

decay times of the pulse results in a very narrow steep-fronted and steep-backed wave.

The spectral analysis results obtained for this pressure wave solution (shown in Fig. 10g)

in6icqtes an almost linear decay of energy as a function of frequency; a result

significantly different from spectral analysis results obtained for an N-type wavefirm.

The prediction of such waveforms in a sharp-nonoscillatory manner is a formidable test

of a numerical scheme. The ability of the LW+H+ACM combination scheme to

reproduce these waves with only a slight post-expansion oscillation is another indicaticn

of the excellence of this shock capturing technique for all types of wave propogatinn

problems.

48

? ..: -.. .. . ...... ... .. .. . .- .- .. .. . .. .. . . .. ....... ... .. . -.. .,. ... .. .- ..._. I



100

90

Lcl 80

70
Z

cc 60

50

40- 1 1 1 1 1 1

2 4 6 8 10 12

HARMONIC

Fig. 10d. Time evolution of accumulated PSD as a function of mode number
(LW+H+ACM).

.1P1

50 60
N. 0. TIME

Fig. 10e. Expanded view of the normalized pressure oscillations at an
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CONCLUSIONS

Several shock capturing techniques were utilized to solve the nonlinear hyperbolic

equations describing propagation of finite amplitude waves, wave-steepening, and shock

formation and propagation in a closed-end tube for many wave cycles. A spectral

analysis capa!)ility was incorporated in the program, enhancing the ability to examine

the dissipative and dispersive error pattern of the candidate numerical shock capturing

schemes.

All the "older" techniques tested (i.e., MacCormack, Lax-Wendroff, and Rubin and

Burstein) demonstrated significant diffusive and dispersive errors. The results of an

extensive study conducted with MacCormack's scheme demonstrated that: (a)

dispersive errors increase with decrease of Courant number; (b) dissipative errors

increase with increase in Courant numbers from 0.I to 0.6 and then decrease; and (c)

both dispersive and dissipative errors increase with frequency (for the same Courant

number). These results agreed with results obtained by a linear error analysis. Except

for some insignificant differences, the results obtained for the Lax-Wendroff and Rubin

and Burstein schemes were similar.

Artificial viscosity effects were examined by combining artificial viscosity with

Hyman's predictor-corrector and Rusanov's schemes. The use of artificial viscosity was
.4

conceived as a way to damp past-shock oscillations (erroneous energy content in the

high freqjency modes). However, using artificial viscosity for several wave cycles

resulted in total dissipation of the energy contained in the high frequency modes. It has

been demonstrated (with both schemes) that the total energy loss depends on the value

• "of the artificial viscosity coefficient used; increasing the artificial viscosity coefficient

*resulted i, a faster transition to a pure sinusoidal wave (i.e., elimination of the high

* frequency modes) and a faster wave amplitide decay.
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Numerical experiments with the two Flux-Corrected-Transport-SHASTA schemes

tested demonstrated very good results (except for some aesthetic pre- or post-shock

wiggles) for the standard lest case. Nevertheless, these schemes yielded erroneous

solutions when tested for initial disturbances of high ampliludes; solutions that

exhibited a single or even multiple numerically generated shocks at the center of the

expansion wave.

The Hybrid scheme utilizes a first order accurate monotonic scheme in the

vicinity of admissible discontinuities and a second order scheme in the smooth portion

of the solution. Results obtained with this scheme indicated that for all Courant

numbers, grid sizes and initial wave amplitudes tested shocks are captured without

oscillations. Nevertheless, since the scheme is based upon a transition to a linear (first

order accurate) scheme at shock transitions, the lower harmonics contain more energy

than should be there at the expense of the high frequency content of the wave. This

energy transition resulted in (after many wave cycles) waveforms that are not fully

shocked.

Artificial compression, when combined with the Hybrid scheme, was concei,,ed as

a way to restore the high frequency content of the wave. Results obtained by utilizing

this combination scheme for several Courant numbers, initial amplitudes and grid size

indicated that; (a) shocks are captured in a sharp, nonoscillatory manner over three

grid points, even after several thousand time steps; (b) no significant shift of c-nergy

among modes has been observed after the process of wave steepening has been

completed; (c) energy distribution among modes corresponds very closely to the

analytical solution (for an N-wave); and (d) the solution is not very sensitive to the

value of the switch utiFzed. Because of these qualities, the combination of
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L.ox-Wendroff, Hybrid and Artificial compression was chosen to be incorporated in the

nonlinear combustion instability program. Details of the numerical scheme are given in

Appendix 2.
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CHAPTER 3

SHOCK WAVE PROPAGATION IN VARIABLE AREA DUCTS AND COMBUSTION CHAMi HiPS

Mcst practical tactical rocket motor grain configurations have variable cross-

sectional port areas. When the rate at which the area varies becomes relatively rapid,

or in the limit, discontinuous, the time and spatial evolution of the propagating shock

wave type of instability previously discussed becomes even more complex. If a shock

wave is traveling from a large area section to a smaller one, part of the shock wave is

transmitted and part is reflected. Thus, two shock waves and correspondingly two

contact discontinuities are created. In the opposite situation, when a shock travels

from a small area to a larger one, the shock wave is transmitted, and an expansion fan

is reflected. In an actual motor both of these processes repeatedly occur, creating a

very complicated wave structure in the chamber. The presence of such multiple shock

wave systems in variable cross sectional motors has been confirmed experimentally

(e.g., Ref. 51).

The problem of calculating shock wave propagation phenomena in variable area

chambers is clearly a severe test of a finite difference scheme's ability to capture

several shocks and describe them in a sharp nonoscillatory manner, even after many

wave cycles. In order to evaluate the ability of Lax Wendroff + Hybrid + Artificial

Compression technique to treat such complex problems, a simple closed duct probiemn

was solved initially.

The geometry considered is shown in Figure II. The solution was initiated with a

continuous disturbance having an amplitude equal to 20% of the mean chamber pressure

6.894 MPo (1000 psi) and a waveform niven by cos(T X/L) (most of the initial
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disturbances for solutions presented in Part I of this report used this waveform and the

percentage given is the zero to peak amplitude of the oscillatory waveforn as a

percentage of the mean pressure). The solution was continued for approximately 30

complete wave cycles (nondirnensional time equals 60). The initially smooth cosine

wave quickly steepened into a traveling shock wave, which as previously discussed, is

then repeatedly reflected and transmitted as it encounters the area discontinuity and

the ends of the tube. Figure 12 shows the calculated waveforms and respective Power

Spectral Densities at five different locations along the tube for the ninth and tenth

wave cycles. As expected, the wave forms are quite complex and both the waveforms

and their spectra vary significantly from one location to another. Based on comparisons

with experimental results from cold gas pulse tests, the analytical solution appears to

- accurately portray the physics of this complex problem 4 2 .

The waveform at the left end 6f this test problem is dominated by a single shock

wave and a single expansion fan. One should notice the sharp, nonoscillatory captured

shock, even after many reflections. At the 1/4 point, two strong (relatively) shock

waves, two weak shocks, and two expansions are in evidence. The spectral analysis

indicates that the second and sixth harmonics are missing, as should be expected. The

waveform in the middle consists of traveling shock waves at a frequency double that of

the ends, with half the amplitude. The main features at the 3/4 and right end points are

four and two shock waves, respectively. One should notice the strong augmented even

harmonics at these locations. Since most of the significant acoustic gain and loss

inechanisms in solid rocket inotors are quite frequency dependent, the strong axial

variotions in harmnon.c content in chambers with sharply varying cross-sectional areas

can be expected to ha\ve a significant effect upon motor stability; an effect that is

completely unpredictable on the basis of linear stability analysis.
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Fig. 12. Expanded views of the calculated pressure histories and PSDat five locations along a chamber with an area discontinuity.
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Following the successful solution of the test problem, a solid rocket motor

problem having the same geometry as Figure I I (but with a nozzle at the right end) was

Asolved to demonstrate the capability of the developed model to solve such problems in

the presence of mean flow and combustion. Figure 13 shows the calculated pressure

waveforms at the left end and 1/4 points of the motor. Except for the rounded tops

(attributed to different distribution of energy among the respective harmonics caused

by mean flow and complex nozzle end admittance) the waveforms are quite similar to

those obtained in the closed duct problem.
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CHAPTER 4

LIMITING AMPLITUDE STUDIES

From a practical standpoint, the ability to predict the limiting amplitude reached

by pressure oscillations in unstable solid rocket motors is important in assessing

whether such an instabilily will be severe enough to warrant design or propallant

modifications to eliminate it. For both practical and theoretical reasons it is also

important to establish whether limit cycles are unique, i.e., independent of the

characteristics of the initialing disturbance.

Even under the most carefully controlled laboratory conditions, it is almost

impossible to conduct a series of motor firings in which the only variable is either

initial disturbance amplitude or wayeform. To the author's knowledge no test series

having the primary purpose of establishing the effect of initial disturbance on limiting

amplitude has ever been conducted. Results obtained from some tests which

a,)roximate the required conditions are not definitive, however, on balance they favor

a conclusion that limiting amplitude is independent of the initiating disturbance. It

should be emphasized that the above refers to the limit amplitude reached if a motor is

pulsed into instability. The fact that the triggering event itself is dependent on pulse

characteristics has been clearly demonstrated.

The difficulty in experimentally examining the uniqueness of limit cycles makes

the analytical exainaion of this question all the more important. The question has

been previously addressed for both liquid4 3,44 and solid 4 , 6, 7 rocket motors using both

expansion and numerical techniques. ResulIs obtained from expansion solutions indicate

that the limit cycle should be independent of the initiating disturbance. However, since
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these methods have limits in regard to their applicability to strongly nonlinear

situations with very high amplitudes and/or shock-like waveforms, and since not all of

the nonlinearities present in taclical solid rocket motors were incorporated in the

models, the conclusions must be regarded as relevant, but requiring further

substantiation.

Previous results obtained with the present "exact" model seemed to yield

apparently conflicting conclusions. Results obtained in Reference 4, for motors with a

particle to gas weight flow ratio of 0.36 and 2 micron particles appeared to

demonstrate that limiting amplitude is a strong function of initial disturbance

amplitude. It was tentatively concluded that the apparently conflicting results were

due to nonlinear particle damping effects. Since this previous conclusion was based on

a limited number of results it was decided to obtain several more sets of solutions, with

and without particles. In this connection it should be mentioned that this investigation

addresses the question of limiting amplitude for Linearly unstable motor/propellant

. combinations (i.e., motor/propellant combinations that under the specific motor

conditions are unstable to infinitesimal pressure oscillations). In such cases, limit

cycles result from the amplitude dependence (nonlinear behavior) of the operative

driving and damping mechanisms.

The nonlinear transient burn rate model utilized here4 is a nonlinear extension of

the Denison and Baum model4 5 and was discussed in Appendix I. In this connection it

should be mentioned that the pressure and velocity coupled response function (Rpc and

Rvc, respectively) values specified in this report are equivalent linear response function

values (i.e., obtained by reducing the nonlinear model to the linear limit). These values

4. : are given for comparison purposes only. In the program, the instantaneous local burn

rate is evaluated utilizing the nonlinear transient burn rate model.
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The series of results shown in Fig. 14 are for c cylindricaily perforated motor 59.7

cm (23.5 in) long with a port area of 21.484 cm 2 (3.33 in2), a throat area of 2.8322 cm 2

(.439 in 2 ) and a chamber pressure of 13.19 MPa (1913 psi). These calculations were

performed for a propellant without particles, and with a linear pressure coupled

response function of 5.35 (no velocity coupling). The solutions were initialed by

perturbing the steady state with fundamental mode dislurbances of varying amplitudes.

In each case the same limit cycle (amplitude and waveform) was reached. Additional

solutions for the same motor and operating conditions were obtained with several other

pressure coupled response functions. All of the solutions for o given response function

reached the same limit cycle condition (i.e., the same amplitude and waveform) but

each response function produced a somewhat different limiting amplitude.

Several other series of calculations were then performed with varying sizes and

amounts of particles to re-examine the conclusion reached in Reference 4. The first

seriet of calculations (with the same 'motor geometry used in the results shown in Fiq.

14) was conducted with 2 micron aluminum oxide particles and 15% particle to gas

weight flow ratio. The results shown in Fig. 15 were enlightening. The computed limit

cycle amplitudes were the same (30.4% of mean pressure, peak to peak) even though the

initial disturbance was 40% in one case and 2% in the other. Calculations with

intermediate initial disturbance also reached ihe same limit cycle condition.

This last series of results raised serious questions concerning the validity of the

conclusion reached in Reference 4. In order to settle the apparent conflict, the earlier

IL results (reported in Ref. 4) were reproduced. This time, however, the solutions were

carried out for lwice cs many wave cycles. Doing so immediately provided the answer

to this seeming paradox. The solutions presented in Fig. 16 show that at a

nondimensional time of 70 (when the earlier solutions were terminated) the decay rate

was quite small, but not zero. It was falsely assuined that continuing the
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solutions would not significantly alter the limit cycle nmplitudes. The present

calculations show that except for initial perturbations close to 5%, the wave is either

still growing or decaying at T=150. All of the solutions were getting closer and closer to

the same limiting amplilude, but had yet to reach it. Figures 16 show the present

results obtained with 2 micron, 36% particle to gas weight flow ratio and initial

disturbance amplitudes of 40% and 2% of the mean pressure. Given the previously

presented results for 15% 2 micron particles, it is expected that the solutions will

approach the same limiting amplitude. Furthermore, Figs. 16a-b demonstrate 1hrit

when a particular molor propellant combination is near neutral stability (i.e., very small

growth or decay rate), a very long time is needed to reach a limit cycle condition.

To further demonstrate the effect of relative stability on the time needed to

reach a limit cycle condition, calculations were made for the same motor and

propellant (36%, 2 micron particles), but with an increased pressure coupled response

. function. The increased combustion driving unbalanced the gains and losses, and as seen

in Figs. 17a-b, resulted in the relatively rapid establishment of a limit cycle with an

arnpli,:jde of 29.6% of the mean pressure. Here again, additional solutions

demonsirated that the limit cycle condition (i.e., amplitude and waveform) was

independent of initial disturbance amplitude.

An important application of nonlinear instability analyses is the predict'on of

motor response to pulse type disturbances. The results of two solutions that tesi the

ability of the LW+H+ACM to trect such problems are discussed. In both cases, the

initial Pressure distur$.;nce waveform was taken to be of the form sin 6 (n X/L)

producing a centered symmetric waveforrn with an amplitude equai to 0.4 of the mean

pressure. The difference betwken the two cases was the initial velocity at t=O. In one

case, the nondimensional velocity was taken to be P/:, while in the second ca', , the
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velocity was taken to be zero. The first case represents a traveling pulse (actually

setting Av = Ap/y only produces a pure right traveling wave in the linear limit as

Av approaches zero). The second case corresponds to a standing pulse. The pulse

propagates as the sum of equal left and right traveling waves, each having half the

initial amplitude.

The calculated pressure histories at the head end of the motor for each of these

disturbances are shown in Fig. 18 (traveling) and Fig. 19 (standing). The dramatic

difference between the results demonstrates the importance of specifying the velocity

disturbance associated with a pressure pulse. The traveling pulse is immediately

transformed into steep-fronted, shock-type waveform and decays until it reaches the

same limit cycle condition as the solutions initiated with first harmonic sinusoidal

disturbances (21.73 percent of the mean pressure). Spectral analysis of this solution

indicated that at early times a large percentage of the energy of the traveling pulse

was contained in the fundamental mode, but a 'significant higher harmonic content is

-" also evident.

The pressure history of the standing pulse disturbance is shown in Fig. 19. The

time variation of the waveform is quite complex in this case. The spectral analysis

results shown in Figures 20a to 20c help to clarify what is happening. At early times, a

symmetric standing pulse centered in the motor excited essentially only even harmonics

(Figure 20a), with the 2nd harmonic dominating. The fundamental and odd harmonics

contained an insignificant amount of energy at this time. Since only the fundamental is

unstable for this motor, the even harmonics decay with time, while the fundamental

. begins to grow. In the nondimensional time interval of 20 to 40 the waveform becones

-[ quite complex as it transitions from a steep 2nd harmonic dominated wave to an almost
.4.,

pure sinusoidal wave at the fundamental frequency. At a later time this solution was
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continued out to a nondimensional tifne of 180. The waveforin continued to decay out

to about nondi:nensional time of 100. At this time, the amplitude of the wave was only

1.6'' of the mean pressure (compared to 40% initially) and the wave was essentially a

pure fundamental sine wave. After t- 100, the wave started to grow again. As the wave

grew and steepened, higher harmonic content again began to appear as a result of

energy transfer from the fundamental to the higher hartmonics and the solution reached

the saine limit cycle achieved with the other initial perturbations. Based on these

results, it has been tentatively concluded that the limit cycle condition (amplitude and

waveform) is independent of initial disturbance characteristics.

Figures 21a and 21b show the expanded views of the time evolution of the pressure

oscillations for the standing pulse test case between the nondimensional times of zero

and ten. Figure 10a was computed utilizing the LWH+ACM method, while Fig. 21b

shows the result obtained using the Rubin and Burstein Scheme. The erroneous

development of higher modes when utilizing the Rubin and Burstein Scheme is evident

after the third wave cycle. Spectral analysis of the Rubin and Burstein solution

ir,dicates that the fourth and sixth harnonics contain erroneously high energy at the

nondirmensional time period of 7.5 to I5 (as shown in Figs. 22a and 22b). Even in this

case, in which all modes except the fundamental are stable, the effect of such

erroneous higher mod c-ontent is not merely cosmetic. When perturbed with a first

mode disturbance, the rubin and Burstein results reached a limiting amplitude which is

approximately 5()% higher than the limiting amplitude obtained with the LW+H+-ACM

scheme. Such a difference can be critical when one considers the vibration levels that

con be tolerated h-., guidance and control systens. These results conclusively

demonstrate the superiority of the LWH+ACM scheme over the generalized Lax-

Wendroff type sclietrcs for ,lie present class of problens.
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CHAPTER~ 5
VELOCITY COUPLING STUDIES

9 INTRODUCTION

A survey of past attempts to model or predict the effects of velocity coupling on

the stability of solid rocket motors leads one to the conclusion, supported by the results

of a recent JANINAF workshop on velocity coupling4 6 , that very little is known about

velocity coupling at this time. All existing models appear to have significant

deficiencies. Price's original velocity coupling model 4 7 is purely empirical. Other

investigators sought to modify existing combustion models by introducing an additional

source of heat transfer to the propellant surface. For example, in Refs. 48 and 49, a

heat transfer term based on an empirical function of velocity was utilized, while in

Refs. 50 to 52, additional heat transfer was included on the basis of modifications to

steady state turbulent boundary laye" theories and/or erosive burning rate models. All

of these models ignore some of the fundamental physics of the problem. Turbulent

boundary layers in the usual sense are not typically realized in solid rocket motor

cha nbers. 5 3 While some of the existing velocity coupling models properly reduce to

stead, state erosive burning models as the limit of zero frequency is approached, none

of them properly treat acoustic boundary layer effects that become significant in tile

normal longitudinol frequency range 54 (say 200 to 000IHz). In addition, acoustic

boundary liyer transition and acoustic turbulence interactions may also be important

under certcin conditions as may the interaction of an unsteady boundary laver with the

pro;)ellant surface structure.

Due to the deficiencies of currently existing models, no velocity coupling model

was selected for incorporation into the overall nonlinear stability program at this time.
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Instead, calculations were performed utilizing several different ad hoc functions of

velocity to directly augment either the heat transfer to the propellant surface, or the

transient burning rate itself.

The primary purpose of this velocity coupling study was to demonstrate the

potential usefulness of the present analytical framework in assessing the validity of

improved velocity coupling models as they are developed. The initial calculations to be

- presented herein are for constant cross-sectional area, cylindrically perforated motors.

The basic configuration is the same as that used in the previous study.4 The reasons for

selecting a cylindrical configuration to start with were: I) It is the simplest possible

*. motor configuration; 2) A large body of pressure coupled only solutions was available

for these configurations; 3) Linear velocity coupling theory5 5 yields no effect of

velocity coupling for such configurations, thus, any velocity coupling effects observed

would be due to nonlinear effects; and 4) although cylindrical motors often show little

evidence of vlocity coupling, there are many recorded instances where severe

triqgered instabilities with large mean pressure shifts have been observed in such

r molor. 1-3, 42

All of the velocity coupling models developed to date have retained Denison and

3aurn's assumption of quasi-steady gas phase behavior in the combustion zone above the

propellant surfice. Each of the models then makes certain assumptions and hypotheses

that lead to a velocity dependent term that enhanc,;s the heat transfer from the

" co:nbustion zone to the propellant surface. In terms of the combustion model which is

*'. currently ,tilized in the present nonlinear analysis, this corresponds to incorporation of

an ndditional term in the surface energy balance.
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HEAT TRANSFER AUGMENTATION MODEL

Symbolically, this equation may be written as:

(5)

K -T1_ =Kg 0- ) s rQs

heat transfer heat transfer total energy
to solid pro- from gas phase released at

pellant to surface surface

The term K has to be modified to incorporate the effect of acoustic

velocity flucluations. In the absence of a fundamental pnysical model, a number of

functional forms were considered. Since a functional form of the following type has

sometimes been successful in rationalizing observed events it was considered first.

g ax V C C I- u d C2 Gi-.Ut]

where C 1 [O HJ <Ut(Jul t (6)

and C lul <Ut

Here u is the total velocity, u = 0-+ u'; u is the mean velocity and u' the local acoustic

velocity fluctuation. The term ut represents a threshold velocity which in reality may,

or may not, (-xist. Justification for this functional form may be found in s,=-veral

references.4 7 ,18

When u' >> u -Id ut = 0, Eq. (6) can be approximated by

Lg
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4ccordinq to linear analysis, a term such as shown in Eq. (6) can only be added to the

heat transfer. However, in nonlinear analysis a velocity coupled heat transfer term can

be incorporated on an additive or multiplicative basis. It was decided to insert a term

on a multiplicative basis. The following functional form was adopted:

SK 2-TI+lpc 1 1 + L vc Fu
1  (8)Kg +j1jPj V L 9  L PCJ

Where F(u) is given by Eqs. (6) or (7), Rpc is the pressure coupled response function and

Rvc is the velocity coupled response function.
A.

For small amplitude oscillations, u'<<u and ut z 0, the right hand side of Eq. (6) reduces

to u'. Thus, using the combustion model evaluated in the linear limit, 4 it can be shown

that for Rvc to be equal to Rpc, ) vc in Eq. (8) must satisfy

SC (n-n
2n(1-H) + C 

(

... A (9)
S

8 -

In the small amplitude linear limit, Eq. (8) combined with the present combustion

model, reduces to the velocity coupled model used by Culick,4 8 and Levine and

Culick. 40 Equations (8) and (9), together with either (6) or (7), were termed the heat

transfer uugmentatior. model.

The calculations shown in Fig. 23 are for the same motor used in the Ref. 9

,- studies. With a linear pressure coupled response function of 3.3 and no velocity

coupling, this motor propellant combination reached a limit amplitude of 21.73% of

tnean pressure (peak to peak). With the heat transfer augmentation model, Eq. (6),
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ut = 0 and a velocity coupled response function of 3.3, the calculaled waveform (Fig.

23a) is almost the sane as with pressure coupling i!nne. At the limit cycle condition,

1he lower envelope of the oscillations is almost the same. However, the zer to peak

amplitude was increased by 1.2%. Increasing the velocity coupled response function to

19.8% gave the results shown in Fig. 23b. Here again, the lower envelope of the limit

cycle remained at the same level, while the zero to peak amplitude was increased by

7.3%. Neither of these two cases demonstrated q measureable mean pressure shift even

after 75 wave cycles.

In order to further explore the reasons for this behavior, additional solutions have

been obtained with extremely high values of Rvc. At a value of Rvc=4 0 , strong

nonlinear effects and a measureable dc shift were produced. At Rvc=6 6 (Fig. 23c), a

significant dc pressure shift is observed, as well as a modulated limit cycle amplitude.

BURN RATE AUGMENTATION MODEL

In order to explore the ineffectiveness of the heat transfer augmentation model, a

second ad hoc velocity coupling formulation was inserted into the nonlinear instability

cnalysis, as follows:

Wp +vc [I + F()] (0)

W is the instantaneous propellant mass Lurning rate (W=W +Wl), and Wpc is the

instantaneous mass burning rate computed from the existing pressure coupled model.

With F (u) giver, by Eq. (6), Eq. (10) also reduces, in the low amplitude lirni, to the

linear velocty coupling model used in the past. The key difference between Fq. (10)

and Eq. (8) is that .)e velocity coupling effect built into Eq. (10) directly modifies the

propellant burning raee rather than affecting it indirectly through a model that was

developed for press',re coupled response function prediction. Equation (10), termed the.

burn rate! (Iugrnentation model, is heuristic and is not meant to imply a particular
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physical velocity coupling mechanism. However, it wa, fet that soluions ohtained

using it would be instructive.

A series of calculations was then carried out with velocity coupling added on thu

basis of Eq. (10) with F(u) -- lu'l, Rvc = 5 and Rvc = 2.18. The results obtained with

pressure coupling only indicate that this motor/propellant combination is stabie, even to

high amplitude disturbances, as shown in Fig. 24a. These results are confirmed by linear

theory. 5 5 However, with both pressure and velocity coupling the results are entirely

different. With an initial disturbance amplitude of 2% of the mean pressure (Fig. 24b)

ihe disturbance amplitude grows initially, but the overall result indicates a stable

molor. Wilh an initial disturbance amplitude of 5% of the mean pressure (Fig. 24c),

the oscillations grow to an amplitude of about 25% (peak to peak), appear to start

damping, but then grow again. A mean pressure shift of about 12% is observed. With (

40% initial disturuonce amplitude (Fig. 24d) the oscillation amplitude decays until it

raches an amphtude of about 20%, maintains that level for a while and then begins to

grow agnin. The mean pressure shift observed is about the same as that resulting from

a 590 disturbance.

This last serie of calculations demonslrales a number of characterisrics of

obsvr,,ei nonlirvear instabilities; characteristics that the model with pressure couplinq

alone has not been be to simulate. These characteristics are triggering (T-ig. 2ib

comp*-rea ta 24c nnd 24d), waves thct irow and then decay (Fig. 24c), mean pre.,sure

0m is thai, ip ar to be -elativelv independent of inmtial amplitude (Fig. 24c, 24-i), and G

iack of *, i able !irm* cycle behavior, i.e., modulating arnpl;Itde (Fiqs. 24c, 24d). To th(.

nuthor 5  w y'.s I:ow- .. this is the fi t lime such solutions have been obtained.

Based on thes- res ';s, it has been concluded that the relative ineffectiveness of

""r( heat tromnfer ou-rnentani)n model is a result of the respons-e function versus

.g
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frequency characteristics implied by Denison and Baum type models. With such quasi-

steady combustion models, the gas phase heat transfer (whether fron pressure or

velocity coupled effects) produces a response function versus frequency curve that has

, sitqle narrow peak. I -re 25 de:picts the response function versus frequency curve

for the parometers used in the calculations shown in Figs. 23, 24, 26, 27, and 28 (A

5.?/5, H-K .53). At the nondifnensional frequency implied by the propellant burn rate

paraneters and motor operating conditions used in the calculations (2 = 3.78) the linear

pressure coupled response function was equal to 3.3. At the 2nd harmonic frequency

. : 7.56, the linear pressure coupled response function is only 0.3, while at the higher

harmonics, it is even lower. With the heat transfer augmentation model the velocity

coupled response function is, to first order, proportional to the pressure coupled

* response (Note: for the problems being considered, the waves are primarily traveling

rather than standing, ad the velocity is approximately in phase with the pressure over

h il f the cyc-le and 1800 out of phase with the pressure over the other half of the cycle).

rhus, for the problem that was solved, the velocity coupled response for the 2nd

harnonic was about a factor of 10 I.ower than the response function at the fundamental

.node.

With the mass transfer augmentation model, Eq. (10), the velocity coupling

response is independent of the combustion model, and to first order is independent of

freqmency. Thus, when a velocity coupled response function of 5 was specified, this was

the approximnote value (it all frequencies. Given the nature of Fig. 25, it would require

I value of Rvc/ lrpc - 16.6 (which implies Rvc = 55 for the first harmonic) in order for

the heat tronsfer aigi eto'ion nodel to produce a similar value of Rvc 5 for the

second hari noni .

The above discission ppears to be able to explain the wide disparity between the

res ils obtained with the t /o nd hoc models. Furthermore, it implies that a realistic
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velocity coupling model will nave to be capa')lk of proviina strog driving at the higher

harmonic frequencies.

In order to examine the effect of F(u) on the computed results, lu'l was replaced

by Eq. (6), and the same series of calculations was repeated. Figure 26 shows the

calculated results for an initial disturbance amplitude of 20% of the mean pressure. In

thisi cnse the motor appears to be marginally stable. To examine the behavior induced

by Eq. (6) under unstable conditions, the calculations were repeated with a velocity

coupled response funcilon (Rvc) equal to 13. Even with such a large velocity coupled

response, a stable solution was obtained to an initial disturbance amplitude of 2% (Fig.

27a). Increasing the initial disturbance amplitude to 5% (Fig. 27b), however, produced a

large amplitude highly modulated instability, with a significant mean pressure shift.

The sensitivity of the results to changes in the functional form of the velocity
perturbation utilized demonstrates th6t the present nonlinear stability analysis can be

useful in assessing the validity of more realistic velocity coupling models, as they are

developed.

To further our understanding of the velocity coupling problem in particular, and

nonlinear iistabiliy in general, the solutions presented in Figs. 24b and 24d were

examined in detail; 5 6 not only at the head and aft ends but also at the one quarter, one

half and three quarter points. Analysis of the results demonstrated a very complex

behavior that is, undoubtedly, a result of many mutually interacting nonlinear fluid

dynanics and combustion phenomena. Some of the complexity of the problem is

illustrated in Figs. 28 >nd 29, which present expanded views of the perturbed pressure,

burning rate, and velocit,' (actually F(u) = I u' I) waveforms at the head end, 1/4, 1/2,

ond 3/4 points and -'ft !nd, for the cases previously presented in Figs 24b
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Mid ):, respectively. [he waveforins are shown in the interval around a

,nili,,nnsionol tii ne of 30) (i.e., (if ter about 15 wave cycles).

If the oscillations were standing waves, the velocity os,'illatons would be 900 out

of phase with the pressure oscillations. On the other hand, if the oscillations were

traveling waves, the pressure and velocity would be in phase for half of a wave cycle,

and 1800 out of phase for the other half of the cycle (Figs. 2.' and 29 show I u' I rather

than u', thus lu'l should be in phase with p' for the who!e cycle). The phase relationship

between p' and in' is a very complex function of the frequency, amplitude and phase of

the pressure and velocity waves and the characteristics of the propellant. From a

stability standpoint, the phase relationship between p' and rn' ;s critical, since the

CoMnbustion driving is produced by the component of rn' that is in phase with p'. The

" figures were designed only to display the phase relationship-; between the oscillations;

the amplitudt' scales for each curve are different and are not indicated.

From Fig. 28 (stable) and Fig. 29 (unstable), it can bo seen that the waves are

prinarily, but not completely, travelling waves, since the velocity is close to being in

phase with tho pressure. This is true even though the calculations were initiated with a

standing wav,- disturbance, and for the stable case, even though the waves are not

steep-fronted and are of relatively low amplitude. In addition to the differences in

waveforms, there are some other significant differences between the two sets of

results. At the head and aft ends, where the velocity oscillations arn zero or very

small, r.-spec ively, the phase relationship between rn' and p' is still quite different for

the two cases. In the stable case (Figs. 28a and c), the burn rate leads the pressure by

abolit 510. while in the tinstuble case (Figs. 29a and c), the [-,urn rate lags the pressure,

,ut -nmly hv 90. At these points (X 0, X L) the difference in phase between the two

*(,ass C'In rnlv !e cittrihute i to the difference in the pressure waveform. At the 1/4

H 7
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,point, the results are somewhat more complicated. For the unstable case (Fig. 29b), the

Omniplitlle tof the pressure wave is lower when it is traveling towards the head end than

ltter it hs been teflected off the head end and is traveling back towards the nozzle.

The behavior of the burning rate and velocity waveforms for this case are just the

opposite, i.e., they are lower after reflection than before it. For the stable case (Fig.

28b), both the pressure and burning rate are 'ower after reflection, while the velocity is

higher after reflection than before it. In addition to the differences in the behavior of

the wave amplitudes, the phase relationships in the two cases are also different. In the

unstable case (Fig. 29b), the burning rate is almost exactly in phase with pressure over

the whole wave cycle, while in the stable case (Fig. 28b), the burning rate leads the

pressure by about 200 when the wave is traveling towards the head end, and lags the

pressure by aboul 200 when the wave is traveling towards the nozzle. In the unstable

cnse, the velocity leads the pressure by about 100 when the wave is traveling to the

I-ft, and logs the pressure by about 100 when it is traveling to the right. In the stable

caS,, the velocity leod/laq is the same with regard to the direction of travel, but the

nagmitude of the lead or lag is about double (about 200).

At the center of the motor (Figs. 28c and 29c), the wave amplitudes are almost

the same, regardless of the direction of travel, and the phase differences essentially

disappear. In the center, the pressure, velocity, and burning rate are all in phase, in

bo0th roses. At the 3/4 point, the amplitude and phase behavior for the two cases is

* niolr to that at tie 1/4 point, but in an anti-symmetric fashion in regard to direction

of wove travel.

h t fron exo,'linirq these two cases at one point in time, it becomes apparent

lo.w c-o;rel. < nonline r wave propagation can become. The waves are, in general, some

,,ntinq of triveling nnd standing waves. The frequency content of the waves and
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the phase relationships of the pressure, velocity, and the burning rate vary significantly

from one point in the motor to another, and for the same motor and location, vary as a

function of the initial disturbance amplitude. In addition, the phase angles between m',

u', and p' vary intra-cycle, i.e., from one portion of the wave cycle to another, and also

vary in time from one cycle to another. This nonstationary behavior of the phase angle

is the most likely cause of the modulated limit cycle amplitudes that are observed in

the nonlinear velocity coupling solutions. Results such as those presented above clearly

demonstrate why attempts to solve nonlinear instability problems using techniques and

understanding based on linear analyses cannot be expected to be uniformly successful.

THRESHOLD EFFECTS

All of the velocity coupling results previously presented herein were for zero

threshold velocity. Since threshold effects have been observed,5 7 a brief attempt was
made to examine their effect within the context of the present ad hoc model. The

rc:,Ats presented in Fig. 30 were obtained for the same motor used in the other cases

pre:,, rted herein. The burn rate augmentation model was utilized with F(u)l u' I -u t .

Wit!- the pressure and the velocity coupling values used in the Fig. 24 calculation (Rpc

2.18, Rvc 5 5) an unstable result could not be achieved with a threshold velocity equal to

0.02 (ut is normalized by the steady state gas sound speed, so ut 0 .02 corresponds to

about 60 ft/sec or 18.29 m/sec). Rvc was then increased to 13 and the calculations ,,.ere

repeated. witO ut .02 and 0.02P, a stable result was obteined again (Fig.

30c). Hoever, whe' 'p was increased to 0.08P, a highly nonlinear instability was

produced (Fig. 30b). The threshold velocity was then increased to 0.05. With the

increased threshold veluc'iy an unstable result could not be achieved, even with initial

disturbance perturbat;ons as large as 40% of the mean pressure (Fig. 31).
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Although threshold effects, if they exist, are not expected to be a function of only

nean and/or fluctuating velocity, these results indicate that, as expected, threshold

effects act to increase the magnitude of the velocity coupled response function

required to trigger tin instability. The results also imply that propellants with high

thresholds will be difficult or impossible to trigger. Threshold effects, variations in

Rvc as a fun-tion of frequency, and nonlinear fluidynamic effects, all interact to

determine the nonlinear stability of a given motor propellant combination.

CONCLUSIONS

The complexity of nonlinear instability in solid propellant rocket motors and the

larme number of mutually interacting ph/sical phenomena which control it, makes it

very difficult to form qenerally valid quantitative conclusions, even from a relatively

l(arqe number of nunerical or experimentall results.

The following conclusions can, however, be drawn from the large number of

nonlinear instability solutions obtained during the present investigation:

I. Based on many more solutions than had been available in the past, it is concluded

that pressure oscillations will reach a limiting amplitude that is independent of the

characteristics (waveform and amplitude) of the initiating disturbance. This conclusion

appears to hold for urmnetallized as well as metallized solid propellants, but cannot as

vet be generalized to include cases when strong nonlinear velocity coupling is present

(see number 5 below).

2. Velocity couplinq models based on modifications to standard quasi-steady gas

phasp, honogeneous solid phase assutiptions are not capable of producing strong

nonlinear effects ait realistic" values of velocity coupled response function.

3
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3. A realistic velocity coupling model must be capable of predicting hiqh combustion

response over a wide frequency range for propellants thai are known to be able to

produce strong nonlinear velocity coupling effects.

4. Nonlinear oscillations in solid rocket motors are very complex. The oscillations
are, in general, a combination of traveling and standing waves, with the traveling

component being dominant, even for non steep-fronted waves at relatively low

a-nplitudes.

5. The phase angles between pressure, velocity and burning rate oscillations vary

from one location in the motor to another, and are non-stationary in time. The non-

stationary behavior of the phase angles is the most likely cause of the modulated limit

cycle amplitudes observed in the solutions and in motors.

6. The predicted results were quite sensitive to changes in both the magnitude of the

velocity coupled response function utilized and its functional dependence. Thus, it is

c.)rwIuded that the present comprehensive nonlinear stability analysis will prove to be

vaIuble in assessing the validity of improved velocity coupling models as they are

developed.

7. Solutions obtained using a threshold velocity imply that propellants with high

acoustic velocity thresholds will be difficult or impossible to trigger unless they ilso

hnve a very high level of velocity coupled response.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

A new combustion instability model that describes the combustion and flowfield

inside a solid rocket motor has been developed. The capability of this model to predict

the multiple shock, triggered type of instability that occurs in modern variable cross-

sectional area reduced/minimum smoke solid motors was demonstrated. It has been

shown that the model can predict triggering, DC pressure shifts, and modulated

amnplitude limit cycles; phenomena that are all observed in actual solid rocket motor

instability data. The model also predicts waveforms that are in good qualitative

aqreenent with those observed during motor firings.

A finite difference integration method based on a combination of the Lax-

'Nendroff, Hybrid and Artificial Compression schemes was found to be superior to other

schemes tested. This scheme is capable of describing a shock as a sharp discontinuity

without generating artificial pre- or post-shock oscillations. The method does not rely

on the tse of an artificial viscosity, and is capable of preserving the high frequency

content of the waveforms. This combination technique can also treat the reflection of

shocks from boundaries and has small diffusive and dispersive errors even after many

wave cycles.

Pressure oscillations were shown to reach a limiting amplitude that is independent

of the chracteristics of the initiating disturbance. This conclusion appears to hold for

,jnmnretllized ns well (s inetallized solid propellants, but cannot as yet be generalized to

im, 11,e (cases when strong nonlinear velocity coupling is present.
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Velocity coupling models based on quasisteady gas phase, homogeneous solid phase

assumnptions are not capable of producing strong nonlinear effects at realistic values of

velocity coupled response function. A realistic velocity coupling model must be capable

of predicting high combustion response over a wide frequency range for propellants that

are known to be able to produce strong nonlinear velocity coupling effects in solid

rocket motors.

Nonlinear oscillations in solid rocket motors are very complex. The oscillations

are, ir: general, a combination of traveling and standing waves, with the traveling

component being dominant, even for non-steep-fronted waves at relatively low

a-xpl;Iudes. The phase angles between pressure, velocity and burning rate oscillations

vary from one location in the motor to another, and are non-stationary in time. The

non-stationary behavior of the phase angles is the most likely cause of the modulated

limit cycle amplitudes observed in the solutions and in motors.

The predicted results were quite sensitive to changes in both the magnitude of the

veL.ity coupled response function utilized and its functional dependence. Thus, it is

concl.ded that the present comprehensive nonlinear stability analysis will prove to be

valuable in assessing the validity of improved velocity coupling models, as they are

deveioped.
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NOMENCLA TURE

U"'(n  - Courant l nm er

-Cp - specific heat of gas at constant pressure

IF vector of the conserved quantities

F(u) - defined in Eqs. (6) or (7)

G - Flux vector

ik - thermal conductivity

m - mass flux fr-in burning surface

p - pressure

Qs net heat of reaction for processes at burning surface

I' linear burn rate

T - temperature

- time

u - velocity

ut - threshold velocity

v - mass burning rate, per unit length, per unit cross sectional area

x - axial distance

- gas only isentropic exponent

- defined in Eq. 9

- thermal dif fusivity

- density

- nondirnensional frequency

• " rirtifical viscosity coefficient

[
~

.

"% l r



Subscripts

g - gas

pc - pressure coupled

s - at the burning surface

vc - velocity coupled

Superscripts

- denotes a perturbation

(-) - denotes steady state value

.1 - - - 0
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)QUATIONS OF MOTION

2.1 Discussion of the Mathematical Model

The longitudinal instability problem in solid rocket motors contains so

many complex, interacting, phenomena that even with a numerical approach cer-

tain idealizations are required in order to formulate a reasonable mathematical

model. In the present analysis the flow in a metal loaded solid propellant motor

is calculated from the unsteady, inviscid, two-phase equations of motion. This

section is devoted to the enumeration, and discussion, of the assumptions and

simplifications which have been utilized in the process of formulating and solving

these equations.

The gas within the motor has been assumed to be jeal, nonreacting,

and irnviscid; with constant specific heats, constant Pra- irnumber, etc. it has

also been assumed that the flow in the motor is one-dimensional, the time deri-

vative of the cross-sectional area can be neglected, and the particles are spheres
which have uniform internal temperature and do not collide with each other.

S.

The gas and particles coming from the burning surface are assumed to

enter the mean flow normal to the burning surface, at the local transient flame

temperature. The effects associated with propellant surfaces inclined to the

direction of the one-dimensional mean flow, and nonisentropic flame temperature

variF-, -ns, are properly accounted for.

Most solid rocket combustion chambers do not have rapid variations !n

cross-sertional area, hence, a one dimensional analysis should provide a reason-

able eooximation to the flow. Rapid, or discontinuous, area variations may be

encounteredi at grain ends when the propellant is not flush, and in the relatively

short nozzles which characterize most solid rocket motors. Rapid area variations

are allowrwi in the present model, even when the flow in their immediate vicinity

is bcsically two dimensional. It is hoped that by doing so the essence, if not

the exact nature, of their effect on motor stability can be demonstrated. The

geometrical de2scription of the motor has been separated into two parts. The area

and perimeter variation in the chamber is assumed to be arbitrary (tabular descrip-

tion), anc may include cn.i, partial length, and segmented (with gaps) grains.

7ne nozzle is assumed to be composed of arcs of circles and straight line segments

as described In Section 3.2.
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It is widely known that the majority of the metal oxide particles are gen-

erated by combustion of metal droplets in the mean flow, not at the propellant sur-

face. The liquid metal pools, agglomerates, partially oxidizes, and, in some

cases, ignites, before leaving the surface. As the relatively large metal agglo-

merates (0 - 100u) burn they tend to produce oxide particles In two size ranges

so called smoke particles (< 2u), and larger particles (-8-101), which represent

the residual coros of the initial droplets. If the residence time of the droplets in

the chamber is ,f sufficient duration the droplets will completely oxidize before

passing out the nozzle.

The residence time of the droplets, however, varies over a wide range,

as a function of position in the chamber. Thus, it may be expected that the par-

ticle size distribution and chemical makeup will also vary considerably from one

end to the other. The possibility that the aforementioned droplet combustion

phenomena may signif:cantly affect the stability of a motor is being increasingly

recognized. Hovever, adequate theoretical models of these complex processes

have yet to be developed. Quantitative data, which could be used to evaluate

such models, is also relatively non-existent.

When , atisfa 'tory analytical models of metal combustion in the chamber

become availabl,,, it Nwill be worthwhile to ittempt to incorporate them into the pre-

sent instability mod,1 In the meantime, it has been assumed the metal is complete-

ly oxidized at the buri ing surface. The resulting inert particles are assumed to be

divided into discrete s[ze groups; the weight fraction of each group being invariant
* with K cation.

All particles of a given size, at a specific location, are assumed to have

the same velocity and temperature. The adequacy and consequences of this as-

: umptlon ire discussed in Reference 1. One of the consequences of this assump-

tion is that the entering particles .)re forced to instantaneously exchnge heat and

:roment:', with the main -treim in order to acquire the local velocity and tempera-

tLr-. : S liscus ;ed in R,,ference I, the required momentum and energy exchange*

n ~nr po tulatet to occur strictly amongst the particles themselves, through a

collisional process; or, the interaction may be assumed to occur directly between

the particles and gas. The equations of motion are actually somewhat different,

Iepenina on whch of the assumptions is invoked. It was suspected that, since

1 57
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the particle-gas equilibration time tends to be quite small in motors, the choice

made little jifference. This suspicion was confirmed by solving the equation. , for

both cases. The equations presented in the following section assume the entering

particles interact directly ,ith the gas.

The steady state burn rate is ass umed to be given by an empirical pn Icw

r. odified for the effect of erosivity. The assumptions and details of the nonlinear

model used to ,'-aracterfze the transient burning rate of the propellant are presente,(

in Sectio'i 5.

-Moh.e present model should allow for a realistic assessment of the effect of

nonlinearities on longitudinal motor stability. Once the basic validity of the model
has beer, verified, and should it prove warranted,the model may be enhanced by the

relaxation of one or more of the current assumptions.

2.2 Lou-tions of Motion

The equations of motion, as presented, reflect the model described in the

previous section. Actually, two forms of the equations are given; the conservative

form and the corresponding non-conservative form (also called the primitive forn).

Currently, the computer program solves the conservative form of the gas r quations,

an-i the non-conservative form of the particle equations. The rational behind this

choir- is discussed in Section 6. 1.

Cons-:i'e Equations

"- -,ontin u, it y

S* 1 (p*u*A*) ,,
:Gas: t + A - (2-1)

( ) (* u* A*)
Particles: -  - 7 3. * (2-2)* tA .. + ]

wher._ asteris..s ernat (;n,-sional quantities, . and * are the gas and i th par-
D.

ticle crou, densit espectively, d* an: u* are respectively, the gas and i thp.
p :rticle r7roup veiocities is the I ,l mharnDer cross-sectional area, w* is the

mass flu-;: of prope Illant ias, nterir : t}se ('har ner pr,r unit length, per u it cr 's-

IL,



sectional area, and .3 is the mass fraction of the i th particle group in the mass

leaving the surface (mass of i th particle group divided by mass of gas). The

quantity t* is time, while x* is the axial coordinate measured along the center-

line of the motor.

Momentum

* (i* 1% F(.+.u1). = * dA*Gas: I + * Lx * A* d)* +

+= (P+, u*) A 7
N (2-3)

a(C* u* ) A(0" u A*)
Pi p1  i p - +* u* (2-4)

Particles: ,t* + A* * ( p.4pA * P i i P i

where the term F* represents the effect of momentum transfer between the i th
p.

particle group anct as, P* is pressure, ,nd u* and u* represent the tangential
Sii P,.

velocity components of the gas and L th particle group','iI respettively, as they

leive the burning surface (see FiguJr, 3-2). It is assumed that u* and u* ar

equal. N is equal to the number of particle groups. £

Energy

Ga;: t K P T*+ j + *u* P T +- ) " *

(22

-~~+ W~k (C- 1q+T u*2(-5

+ r,*+u r* -* * c* (* -T* * . _

((l f' +Pi j ** Pf miu~)

• l,-I- :* u* (c* T* + -- *:?)A*.'"~~n pii's -5- p- * '. i P m p[ p

(2 - )

n , D . rr. ) - - )" i' I * i



where c* and c* are the heat capacities of ti-e gas arid solid propellant respectively,
p s

Tk a n P T* are th temperatures ()f the gas and I th particle group as they enter theS pf.

mean flow, and 0* represents the volumetric rate of heat transfer between the
"P.

I th particle group and the gas. It is assumed that "i = Tf*, and that the kinetic
energy of the particles and gas at the surface may be neglected.

Non- Conservative Ecuations

Continuity

3*u* A
Gas: + " - A. (2-7)

A* dx*

: * (.* u* ),*u*
Pi )i Pi Pi Pi dA* (2-8)Particles: t* + x* -i -A* dx*

Mo'>entum

Cu r: * 3u* + ,u P
t -  D~ "Tx*- - 37* + "(u* -u*)

(2-9)

N1+u F 3 w*(u* -u

i Pi Pi

Prtiles: + u - (2-1c)p.%t* P x Pi

Energy

Gas: P + u* T*) - Pmu* -U*P* A) - - " x * A * x *

-'- .'*~~~~ ~ [<*(i */) 1(s+U* ) '*

- p f ) s (2- t )

N + )8 *r* 'r- Z~i+ O*,t + u * -u** p 00" *U*pi-*U*s +Cm(T*fi-*)

=1 Pi P)i PI I P p Pf i P

+ (*"

I
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aT*i aT* Q*Particles: P- + u* pi Pi-- (2-12)

Particles: (2U'12-t* a_ 8x* P* C*
P m

Auxiliary Equations

lThe equations of motion are supplemented by the following equations.

State: P*= p*R*T* (2-13)

Steady State
Burn Rate: r*= c* (p-- (l+c*u*) (2-14)

ref

The quantity, w*, is related to the burning rate of the solid propellant, r* as

follows:

s
Mass Burn Rate: . A*(1+8)cosO (2-15)

where p* is the density c(t the solid propellant, I* is the local per neter of the

propellant grain, 8 is the total weight ratio of particles to gas (8= B.), and 6 is

the ingle between the tangent to the burning surface and the axis of the

motor.

p* u* -u*ID*

Reynolds number: Re. = P (2-16)

where D* is the liameter of the i th particle group, and p* is the gas viscosity

given by

Viscosity: " - (2-17)
0 0

* c o Prr:p m )~~Momentum Inter- F* *1(* -U*) 1+ e1(2-18)
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where * is the density of the metal oxide particles. The term F* is equal to them pi

drag force exerted by the particles on the ,as, per unit volume. The drag coefficient

used in oquation (2-18) was obtained from a correlation of the so-called "stan-

dard" drag coefficient versus Reynolds number data for single spheres, in steady

flow. The drag formula used was originated by Kliachko , and is,

Re2/3
c - + R ) (2-19)cd R 6--

The second term in this equation represu nts a correction to the Stokes value,

'4/Re, and allows the formula to be us( i tt Reynolds numbers up to several hun-

dred.

Q* ( c (T* (T*) (- 9Re,*5 5 r

Heat Transfer , * - (2.459 'pr33 (2-20)
Term: Pi m P / *i

The last sct of parenthesis in (2-20) is the expression for Nusselt number suggest-

ed by Carlson Here again, the second term represents o correction to the

Stokes flow value, i.e., Nu=2o

The velocity of the gas leaving the surface, Us, is calculated by conser-
vat io-, of mass from the known propellant bum rate and density. The parallel com-

ponent of surface velocity is

u*= u* sinO (2-21i
5i 5

1.3 Nondimensional Equations

The equations given in the previous section are nondimensionalized be-

fore beinc, recast into finite difference form. 1e resulting normalized variables

are more uniform in :: <,qnitude. This uniformity is beneficiil from a numerical

standpoint. 'Die use of nondimensional variables also facilitates the task of inter-

preting the calculated. results. The following nondimtensional variables are defined
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y */L T = AP//*
t = t*[L P : * P .f fZ '2

I t-dT L*Tp/= p.,p* w
u P. F= F* L*/Of*at (-:

a */a* C = c*/c* Qp= P L*/*c*a*T*
p p P / Cf p f

where 7* is the propellant steady state flame temperature, P* is the chamber pres-

sure, o* and a* are the density and sound speed evaluated at the chamber conditions,

and L* is a reference length, usually the length of the grain. The dimensional

velocities, temperatures and densities (both gas and particle) not listed have been

nondimensionalized in the manner of their listed counterparts.

The nondimensional forms of the , quations given in Section 2.2 are as

follows.

Conservative Equations

Continuity

s:l , uA) (2-27)

)m 'ntum
,-P

+ u

Gas:) I ; P + P dA + u Wo

't + dx s
• II (2-2 5)

P Frti +'(

. r,
• ,P rticler;: -"t - (' ' I p F + 'w z-:

-. . 4~-%*...'%5- - .4. . . ..--- * ..*.. .-.,..*. *..)5



Energy

Gas: 0 +- 0 u vvl+Y)A =

T A2 1  2

-1 x (uPA) + w(-- + s) +E IQU- + U F (2-27)
yA ax Y-l 2 jY-l p1 p

+ c(T -T + U2 2
Y1c  pp .i S '

iiParticles: pA [ 1 ( +I-T .+ 4L ++. i up( CT ~+ .T-)AJ=
p.Piy p. p. T;xY-1 p. 2

Q up (2-28)Pi (
- uFpi + y T __+ 2-'

Non-Conservative Equations

Continuity

6p xu  p dA

Gas: + I (u (2-29)ats a-- x A dx

60 (p u) CuOp (Ppi Pi)  pi pi dA

Pirticles: + (2-30)
Ax 3(2-30)

Momentum

Gas: C) -+ pu x 6 Px+ 7 ± (u -u) + + -(u - (2-31)at lx 'Y x si PiPS P

lu F
6 u u F

Pi p. p.
Particles: + u x pp (2-3 2)

pii
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* Lnercly

-~~~2 3) -+u+

+± (u Pi u)F p +8w u( U )+c( -T )+(u~ U jj
-i -

- + U -

p. :i (2-3 4)
Ip.

Auxiliary Equjition s

ta t,, P LT (2-35)

Step dy Stte n
£i ,rn Rate: r 5~K)( cu)(2-36)

ref

A(1+t3s co so (2-37)

'i '':Re. (1 f -U (2 -3 8)

>Aom rftur Initer- Re.) /
ajction Term: F (u-)(+ )23)p~ af "m Pi uPi p ) 6 39

Heat Transfer*.5 3
T6rr: Q (T -T) (2 + .45 9 Re.*5 Pr .3 (2-40)

P If Om I 1 P

Characteristic Equa-tions

Prcfernr I 1 ,mrth, n f (~haratri!;tjc was used to solve lhe

I ~ 't "ot~n I tt~ ro~;n ilIys i these equations arc' solve I! with a

* F!: ''hn plo. h c :~nsfor tl switclh -rl4iscus sed in Section



6.1. The method of characteristics is, however, still utilized in solving the
equations at interior and exterior, subsonic, boundary points. Finite difference
calculations at these boundaries were found to be unstable.

A method for obtaining the characteristic equations from the equations of
motion has been given in Reference 1. Only the final characteristic equations are
given here.

Gas

The two families of flow characteristics are given by

dxdx - u+ a (2-41)dt

Along these lines the compatibility relations are,
+ + 1

1 6P+ 5 - - au A + w T(-+1) -u us -- (u -u)
/Pa t- 6t A x .a f 2us

s. II iiuu)

P ] -

+- u (u -u +- c ( T) + -T )(

-- s ifi Pi PS Pi + uF( -2

LI

where Uu total derivatives are defined as - + (u +)

The gas si .anlines given by

are C:Iso charactristics, along which the following compatibility relation holds.
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(T~W 6T).-

6 T v-i (P ( _J U_ ) 2Y 6t I(+-2 - u Us + (,l)E

-n (2-4 4)+ (U -u)F + W U u )+ c - T )+(u 2 
- u2)

- P s . -ifPf Pi Ps. P

6where Tt- - + u -- "

Particles

The particle paths for each particle group

dx

d ut- -p, (2-4 5)P.L

are dual characteristics. The two compatibility relations along these lines are,
6 u F

P Pi Pi
6t - (2-46)

Pi

and 6

P p. p.
t-C- c (2 - 4 7 )

Pi

6

wher' - t --- +u
wh-o-'- + (1 1

*1

'the particle continuity equation (2-30) is Lncoupled from the remaining
equations (since there is no particle equition of stale which relates particle
Jonsity to parti-le temperatlire) and t unnot he writt( n in characteristic form. It
can, hr)w(,ver, he. written in the followinj quasi-characteristic form.

6p u u
• _P 3 (1Pi L+ pi (2-48)

6t i Ix A ?x

.1
1

" '" ". . . " "" " """ '" " " " " '" "; " " ' " : . zi = : - . _.. .. . .11%...



Tlmp Ecauations At Gaps In The Grain

The current instability model is capable of treating motor configurations

containinn arbitrarily located discontinuities (gaps) in the grain. If the web thick-

ness is finite there are area and burning rate discontinuities at both ends of the

gap (see Figure 2-1). Furthermore, if the grain ends are uninhibited, the exposed

end will hurn and create a mass flow discontinuity at the plane of grain end. The

assumed one-dimensional inviscid flow model cannot account for the two-dimensional

and viscous eflocts %,hich are, undoubtedly, present in the neighborhood of such

gaps. It is hoped, however, that the one dimensional model will allow the essence

of the effect of gaps on motor stability to be evaluated.

Uninhibited End A >1Aitedibited End 1 2
2 1

eI

I ul' Al etc. , P 2 , u 2 , A2 etc.

Fi ;re 2-1. ,chematic of Two of the Possible Grain Gap Configurations

In -rder to obtain a solution at the plane of a discontinuity (hereinafter

_ailed -n interior boundary) the equations of motions must be supplemented by a set

" of "jump" ejuations which express the fact that mass, momentum and energy are

conserve:-, for both the particles and gas, when the flow crosses an interior boundary.

11-,e appropriate "jump" equations, in nondimensional form, when A2> A1 (see Figure

2-1) are given below. The equations when A1 >A 2 follow from similar considerations

1 nd are noct shc1vr:.

iiiG
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Gas

Mass: plU1 A1 +re = ° 2 u2 A2  (2-49)

P PP2 P 2 (-0
Momentum: -(A 2-A 1) +A 1  + P1u'i ) +e us -A 2 ( +P 2u2) (2-50)

T + e T2 u2Enery: e A2( +-) (2-51)
Inry 1 -y- + -2 e mY- ' 2 u2 2 Y-l 2

whore me denotes the rate at which gas is produced at the uninhibited grain end,

o* r* (A -A I )
me s 2( 1+) (2-52)

u and T are, respectively, the gas velocity and flame temperature, and re iseend
theeend bwuHing rate.

Particles

Mass: u A I me  Op UPA 2  (2-53)

1 1 2 2

Momentum: u" A +f.m U = u2 A (2-54)
Sp1 i e 'e p1  p 2

• s P1? P 2
e

1 )3 cEnergy: 0 U A T e Tf,
1Pi 1 I 1 ue

(2-55)

cI
-p u A2 ,/I T +- u

2 2 2

It is issumed that u = L and T T
S Ps f
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MOCTOR GEOMETRY AND BOUNDARY CONDITIONS

3.1 Grain Geometry

The nonlinear combustion instability model developed in Reference 1 was

iir~itec to motors having cylindrically bored grains of constant diameter. This sim-

plificzation was adopted by choice, rather than due to any inherent limitations in

the analytical model. With the feasibility of obtaining nonlinear solutions adequately

demonstrated it was appropriate to extend the range of applicability of the instabi-

lity model to more general, and, hence, more realistic, grain geometries.

The current analysis is not restricted to constant diameter circular cross-

secti n norts. Solutions can be achieved for grains witn variable cross-sectional

area and arbitrary cross-sectional shape, within the confines of a quasi one-dimen-
sional framevork. Figure 3-1 contains a pictorial summary of the range of allow-

anle configurations. In order to accomodate these geometries within the structure

o the instability model both the equations of motion and boundary conditions had

to bo :eneralized.

In addition to the obvious necessity of keeping terms containing area de-

rivatives, two other effects must be accounted for in order to properly model vari-

able area grains, As shown in Figure 3-2 when the cross-sectional area varies the

oui-r nc surface is necessarily oblique to the direction of the mean flow (in one-

o - a flr,w). In such cases an element of length along the burning surface..

, :n than the incremental axial distance, dx. As a result,variable arc-K.is ,:posed area, per unit of axial distance, than do constant ar~a

o ?'fect is accounted for by modifying the relation between the suiace

mass 7e. ner uni, cross-sectional area, per unit length, w, and the burning rate

(se-, ci. .ticn 3-15). Also demonstrated in Figure 3-2, is the fact that when 6 ,

the vc . :...' . it> '.h. T'h the gds and particles emerge perpendicular to the surniac

-c::.~ovnt :n ti:: lirction of the mean flow given by

us u sinO (3- ,

II
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I'ne momentum and energy equations given in Section Z proper"y account for the

axial momentm content of the combustion products.

Due to burn out, or by design, part of the chamber may not contain grain

at a given instant of time. As a result geometrical and/or flow discontiniuties are

created. The equations and techniques required to deal with such discontinuities

are discussed in Sections 2.5 and 6.4.

Ihe inclusion of end burning effects does not require any modifications

to the equations of motion, however, the boundary condition at the head end of the

grain is altered, as discussed in Section 3.3.

u

dss

II

Figure 3-2. Schematic of a Variable Area Grain

3.2: Nozzle Geometry

in the existing linear stability analyses, and in the nonlinear analysi.

* of Reference 1, the behavior of the nozzle is assumed to be quasi-steady. With
this assumption the exact details of the nozzle geometry do not enter into the pro-

blem. The current instability program has been modified to integrate through the

*throat inte the ruersonic region. This allows the nozzle acoustical impedance

* to se calculatelt without resort to the so-called "short nozzle" (quasi-steady}

assumption. An option to do quasi-steady nozzle solutions has been retain ,

however, since this approximation allows solutions to be entained far more

economically. It wo. 'd be worthwhile to compare instability solutions ohtaind

L'" inten:-atinq the full transient equations through the throat to those obtained zith"

12 C
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the quasi-steady approximation. In this way one could hope to assess the

relative accuracy, and range of applicability of the quasi-steady approximation.

Since the current program provides the option to integrate the equations

of motion through the throat, a complete specification of the nozzle geometry is
required. Since the area derivative is also required, it is preferable to specify

the nozzle shape as an analytic function, rather than via a tabular description.
10 The analytic representation insures that smooth and continuous derivatives will be

obtained. The disadvantage of functional descriptions is that they limit the
allowed range of geometries, to more, or less, of an extent, depending on their

generality. At present, the instability program assumes the nozzle can be des-
cribed by a circle-cone-circle-cone geometry as shown in Figure 3-3. The nozzle
is considered to be composed of four separate regions. The nozzle entrance is
located at the beginning of region 1. From this initial location the convergent
section of the nozzle is assumed to vary in a circular arc in region 1 and conically

in region 2. The throat, region 3, is assumed to be a circular arc, and, finally,
the convergent section, region 4, is tzken to be conical. A certain degree of
flexibility is allowed within the confin, s of this overall geometric description,

however, should this class of nozzles prove to be too restrictive it will be easy
to extend the range of allowable nozzlh geometries.

In the present nozzle descriptLon the following quantities are to be
specified by the program user. All are.is and radii have been normalized with re-
spect to the throat area and radius, re pectively, while all angles are considered

to be positive.

Quantity Des cription

x Axial location of the nozzle entrance.

A1  Area ratio at xI.

"-891 Wall inclination at x 1

82 Conical entrance angle.2 2

83 Conical divergence angle.

R 'cRNormalized radius of curvature of the throat.
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Quantity Description

R Normalized radius of curvature of initial
C2  nozzle entrance section.

SAend Area ratio at -ozzle exit. (Nozzle exit
for computational purposes is not real
nozzle exit).

These quantities completely specify the nozzle geometry in all four regions. The

equations given below, by region, are used to calculate the area ratio and areaI-

derivative at any point in the nozzle. The distance from the nozzle entrance to

the throat is given by the important equation

X - x = R sin(@2 - ) + R sine
c 2  2(3-2)

A1/ 2 - 1- R El - cs(e-el- Rc (1 -cos8)1 c cos (2 l 1 2
tan 2

Region 1: xI < xx 2

x 2 =x 1 + Rc2 sin(e 2 - 61 ) (3-3)

SA = 1/- R r - cos( w - e 1)  (3-4)

I-..X-XI

e. =sin- R (3-5)
C2

,".- dA _ 2 1/2
A"2Adx tan 8 (3-6)

Region 2: x 2 < x x 3

x3 =x t -R sine (3-7)

:.:
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[ /2 - x2 ) tan (2]

dA 12A/2

dx tan 2  
(3-9)

"1'

Region 3: x3 < x x 4
.

x4  x t + Rc sine3 (3-10)

A = 11 + Rcl C21-l t)2121

1/ 
/

dA = 2 2 - [ 2

-( - x dR - (x - ()2 3-12)

Reion 4: X4 <x Xend

r. 12
A= A 1' 2 + (x - x4) tan 83 (3-13)

dA 2Al/2 tan 83 (3-14)

S3.3 Boundary Conditions

-I.

If the transient equations are integrated through the throat into the super-

"" sonic portion of the nozzle only boundary conditions at the head end of the motor

need be specified. No boundary conditions are required at the supersonic exit

plane because all signals from the plane travel downtream only, and, hence, do

affect the previously calculated upstream flow. If the quasi-steady assumption

is utilized a boundary condition must be specified at the nozzle entrance plane.

This boundary condition serves to enforce the choking condition that is, otherwise,

S".set by the nozzle throat.

-. By modifying the boundary conditions the instability program can be made
'.

- to yield solutions to other 1-roblems. Two such modifications have been incorpor-
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ated into the program. One allows nonlinear particle damping to be studied by

specifying a closed end boundary condition at the right boundary. In this way the

amplitude behavior of a finite wave initiated in a particle containing closed tube

can be calculated. The second modification allows two phase, steady state, nozzle

only, solutions to be obtained without having to deal with the throat singularity

normally encountered in this problem.

All of the boundary conditions alluded to previously are definitized in the

balance of this Section.

Head End - No End Grain

With no end grain present the boundary conditions at the head end are

taken to be those corresponding to a rigid wall, i.e.,

u= 0

u =0 
(3-15)

Pi

As discussed in Reference (1), certain assumptions are implicitly invoked when

these boundary conditions are utilized. These implied assumptions are, however,

no more restrictive that those already listed in Section 2.1.

Head End - With End Grain

When there is a burning grain at the end of the motor the boundary condi-

tions constrain the velocity and temperature of both the particles and gas to be

equal to their counterparts in the combustion products, as the products leave the

flame and enter the main flow. It is assumed that the velocity and temperature of

the particles is equal to that of the gas. The boundary conditions may, thus, be

stated as

u =u U
pi s 

(

T =T=T
Pi f
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Supersonic Nozzle Exit Plane

As previously discussed no boundary condition is required in this case.

The properties at the exit plane are currently calculated with a one sided dif-
ference technique.

Quasi-Steady Nozzle Boundary Condition

If the quasi-steady nozzle assumption is invoked a boundary condition

must be specified at the nozzle entrance, The boundary condition currently utiliz-

properly choke at the throat. It is assumed that the two phase flow in the nozzle

can be calculated from steady state relations, and that the particles and gas are

in equilibrium (no velocity or thermal lags). With these assumptions the two phase

mixture behavior is equivalent to that of a perfect gas having the following proper-

ties

- ( + 5c)

(3-17)
c (I + 3)

c = pp 1+R

The : ch number of the "equivalent" perfect gas, M, is related to the gas Mach

numrser by

M= E /2M (3-18)

where

E 1 3 1+ 0~ -lc _7

The Xiach number of the "equiv:lent" 1,is, at the nozzle entrance, Me, is found

by solving the usu ,l isentropic equation for mach number as a function of arei

ratio
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A 2
+

= r 1 -- (3-20)

The actual gas Mach number is then found from equation (3-18). The Mach number
obtained in this manner assures that the flow will choke at the throat (Mt =l at

the throat, M=1 at some point downstreom of the physical throat) within the con-

fines of the quasi-steady, one-dimensional and equilibrium assumptions.

In Reference I the quasi-steady boundary condition was obtained in a

similar, but more accurate, manner. In that analysis the constant lag assumption

(particle velocity and thermal lags are finite, but constant) was used instead of

the equilibrium assumption. The quasi-steady analysis of Reference 1 was, how-

ever, restricted to particles of a single size, and utilized the linear Stokes flow

drag coefficient. It is recommended that the current method of obtaining the

quasi-steady boundary condition be upgraded by reinstituting the constant lag

analysis, after it has been extended to allow for multiple particle groups and a

nonlinear drag coefficient.

Boundary Conditions For Particle Damping Calcfilatlons

The Instability program can be made to yield nonlinear particle damping
solutions by eliminating the grain and applying a closed end boundary condition

at both end of the computational mesh. The physical analogy to this situation is

a closed end tube filled with particles. If the reference length, L, is chosen to be

the length of the tube the boundary conditions become (see head end-no end grain

boundary conditions):

X 0 0, U =U =0P
(3-2 1)

Pi
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Nozzle Only Boundary Condition

The program can be made to solve for the steady state, two phase, flow

in the nozzle only by applying steady state boundary conditions on the left hand

end of the mesh and treating the right hand end as a supersonic exit plane. The

program then obtains the steady state solution as the asymptotic limit of a transient

flow. When treated in this manner the behavior of the flow at the throat Is not

singular, hence, special techniques such as that utilized in Reference 8 are not

required in order to continue the integration through the throat.

The proper boundary conditions for this problem require that the total pres-

sure and total temperature at the nozzle entrance be equal to specified values.

The state of the particles at the nozzle entrance is determined by their flow history

up to that point. Since that portion of the flow is not calculated for this problem

some assumption regarding the state of the particles at the nozzle entrance is re-

quired. It is assumed that the particles and gas are in equilibrium at the entrance.

For most nozzles the mach number and local flow acceleration are small at the

nozzle entrance. Thus, the equilibrium state should be closely approximated in

the physical situations likely to be encountered.

All of the aforementioned boundary conditions are relatively simple and

straightforward. The same cannot always be said for the techniques required to

implement them in the numerical solution, (see Section 6.)
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4. INITIAL CONDITIONS - STEADY STATE SOLUTION

The stability characteristics of a motor are determined by its transient

response to a disturbance away from steady state operating conditions. The effort

to numerically simulate those stability characteristics must, therefore, begin

with a determination of the steady state. The initial conditions for the instability
problem nre then generated by adding a perturbation to the steady state solution.

There are two different routes which may be followed in seeking a steady

state solution. One way is to directly solve the steady state equations of motions,

obtained by setting the time derivatives in the equations of Section 2o 2 equal to

zero. Alternately, one can obtain the steady state solution as the long time

(limit-b-) asymptotic limit of a transient problem in which the propellant burning
nrate is assumed to obey the steady state P burn rate law, for all time. The latter

approach is the one currently utilized.

The chief advantage of the transient approach is that the numerical tech-

niques and computer program subroutines required to obtain a steady state solution

are the same as those utilized in the transient instability solution. The direct

approach to the steady state problem, on the other hand, requires the development

of additional numerical techniques and another set of computer subroutines. By

eliminating the need for additional subroutines, the transient approach to obtain-

Ing steady state solutions results in a program which is simpler, and easier to use,

nodify, and understand.

A disadvantage of the transient approach to a steady state solution is en-

countered with explicit difference methods (the type presently utilized) when the

solution is to be continued through the throat, i.e. when the quasi-steady nozzle

approximation is not employel. This disadvantage is a practical one, resulting

from the relatively long computer times required to obtain steady state solutions

for such cases. (See Section 6.2).

When the current effort was initiated there was no intention of treating

the nozzle in other than a quasi-steady manner. Thus, the existing difference

techniques were evaluated pu-ely from that perspective. As the program progressed

it wos recognized that the op, ion to integrate the equations all the way through the

throat could be incorporated int6 the program with little additional effort. It was

.. . . . .. . . . . . ..... . . ..........-.. . - %•-~. .-



a mat~u tion would be advantageous, since the adequacy of the

'~~~~y~ aorxmto id then be directly examined. Should it prove to

eo *3ntegrate through the throat as a matter of course, rather thani in

Cases , it could be quite worthwhile to switch to a more suitable num-

'k transient methiod o seeking steady state solutions proceeds as fol-

.0' iI~~ 'alucs ire lected for the flow variables throughou the

rterel. >n~,,he ex ot scolution is not known, these inita~ values

t aiscy the Ste_! :y state e uaitions of motion. Th necainprcdr

the-n, vt-oviciod that ste dy state boundary conditions are ~pid

acvst-A obirninai rate lav is utilized, the calculated flowfield will

;ally appro-ach the on e respP sentative of a true steady stake solution.

2 r ,.ord s t ti re derivatives of the transient flow eventu~lly approach
h~ich time thec flow variables U 1 exactly satisfy the steo dy state

.7D motion. in reality,' this iimi can orply be approache4 to within a

JtoleIrance; to reach the limit \NOuV literally, take forgver. As would

', he number of calculations of urdtreceheimdrvavs
a~uie tciie toeducc tie timgdeivaive

a spcifed oleanc issigifiantl\ dependent upory the quality of the

-ate, i. e. the decree to which it differA from the corr~ct solution. The

iis tolerant of poor initial guesscs, ho~vever, m uch/ !Computational time

["-aved by providing a means of selecting a \easonablV, accurate initial

I.- pocedure presently used to generate th~ initial istate is briefly de-

7'e calculations for the initial gas prpris suethe two phase mi'-1-

n )7naric equilibrium. The isentropic exponent hich characterizes the

,tate ex:pansion process for such a mixture is giv b qain(-7

7 ri (3-20) can then be solved to obtain the "equlvalen "gas mach number :.s

f r-, tLo) in the nozzle. Tne Mlacb number is tl4 en assumed to li;nearly

zero from the nozzle entrance (usually the end of Ne grain) to the hood

j aemoor. Thie -,as propertie~s are then established from \he isentropic rr --

s as a function of Mach number. in the chambet the equilibh~m assumption

dJ to generate i-h-e particle properties, i.e.
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felt that such a modification would be advantageous, cince the adequacy of the

quasi-steady approximation could then be directly examined. Should it prove to

be desirable to integrate through the throat as a matter of course, rather than in

very limited cases, it could be quite worthwhile to switch to a more suitable nun-

erical technique.

The transient method of seeking steady state solutions proceeds as fol- -,

lows. At t=0 initial values are selected for the flow variables throughout the [.

domain of interest. Since the exact solution is not known, these initial values

will not satisfy the steady state equations of motion. The integration procedure

is initiated; then, provided that steady state boundary conditions are applied, .... .

and the steady state burning rate law is utilized, the calculated flowfield will - -.-

-" asymptotically approach the one rcspres>:tative of a true steady state o ttiorn. -.-

Or in other words, the time derivatives af the transient flow eventual]v approach '"..-

zero, j% which tirre:oa -'low veriab]c vi ehcatl,- sat isf': a t_

equations of r-otiorn. in :eality, this liF:- can orly he ap:,'wac - to ,'..n

specified tolerance; -e rcach te . mit vcxe, ,tr., ' :o r,, . .. '

be expected, the number of calculations af required -.educe the time d cri'ativ,-.

to within a specified tolerance ts significantly dependent upon the quality of the

initial state, i.e. the decree to which il -iiffers fo t : arect solution. 7 C.

technique is tolerant of poor initial a ues sos, however, n:: cm.utaora time"-.

can oe saved by providin E. :-.eans of 2alc--ting a reascrnab. cc-urate nilial *. *

state. The procedure presently used to generate the initial state is briefly de- J

scribd below.

The calculations for the initial gas properties assume the two phase mix- .

ture is in dynamic equilibrium. The isentropic exponent which characterizes th -

steady state expansion process for such a mixture is given by equation (3-17)

Equation (3-20) can then be solved to obtain the "equivalent" gas mach number as

a function of area ratio in the nozzle. The Mach number is then assumed to linearly -

decrease to zero from the nozzle entrance (usually the end of the grain) to t, h6ad

end of the motor. The gas properties are then established from the isentropic re- W --

lations as a function of Mach number. In the chamber the equilibrium assumption ."-*'

is used to generate the particle properties, i.e.

, - ,~... %°. .

17 C' ,
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P i

T T (4-1)
Pip.

z=8,
P.

In the nozzle the particles are assumed to lag the gas. The amount of

lag is assumed to vary with area ratio from zero at the nozzle entrance to a speci-

fied value at the throat.

Once the steady state solution has been obtained, initial conditions for
the instability calculation are generated by perturbing the flow from the steady

state. The following types of perturbations are currently built into the program.

Harmonic Perturbations

10 rx-x-
P' : a cos n7 - 0 )] (4-2)

n=i n Lxp

and/or
10 2

U' = :b sin n _ 01 (4-3)

where the an and bn are arbitrary constants, x is the hed end of the motor, and xp

is the location at which the disturbance terminates.

Pulse Perturbations

x <-:. x )1
0 p Co

P' a sin [(x ) ] (4-4)

and/or

p d
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-x xo)/2 <x
P 0

P'~ in[ X-Xo]C2P' aI sin 17T x -x (i
p- 0

and/or X - d

u' =b 1 sin TT ( - J (4-7)
p 0

where al, b ,  d1 , c 2 , d are arbitrary constants. The c's and d's control

the effective width of the pulse; the a's and b's control the amplitude. If c

c or d1  d the pulse will be asymmetric.
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5. NONLINEAR TRANSIENT BURNING RATE

The mathematical model for the instability problem is not complete until

a method for computing the transient burning rate response of the propellant has

been specified. Most of the previous transient burning rate analyses have been

linear(, including the burn rate analysis in the author's previous instability

model It became (vident from our previous work that F7 linear transient burn-

Ing rate model has serious limitations. Typical pressure fluctuation levels in

motors, coupled with re!dponse functions on the order of three, can yield fluc-

tuations in burning rate on the order of 50%, or more, of its steady state value.

One could hardly expect linear theory to be valid at these large amplitudes, since

it is based on the assumption that all quantities depart only slightly from their

steady state values. Thus, to extend the range of applicability of the instabi-

lity analysis a nonlinear transient burning rate model has Deen developed, and

incorporated into the computer program.

Past investigations of nonlinear burning rate response have been carried
(1 )(11) (12)

out by Friedly and Peterson ( 1 ) Brown and Muzzy , and Novi: hilov , using

expansion procedures, and by Krier, et. al.,(13) using a numerical procedure.

The expansion procedures are quite cumbersome, and difficult to modify and extend,

especially when carried to higher orders. Thus, a numerical approach to the

solution of the heat conduction equation in the solid was favored. Recently, two

nonlinear transient burning rate models have been ieveloped !
, and solved using

numerical techniques. The analysis reported in Reference ( 1 4 ) was performed dur-

Ing the current co:ttract. These models are quite similar, both to each other, mnd

to that of Ref. (13), however, there are subtle differences between them. The

numerical methods utilized in each of these investigjations also differ. While, in

basic agreement, the results of References (14) and (13) and (15) differ in regards

to the nonlinear behavior of the burn rite predicted when so-called "intrinsic in-

stability" oc,-urs. In References (13) and (14), burning ,,te "runaway", i.e. an

unbounded increase in burning rate, is observed under intrinsical y unstable con-

ditions. In Reference (15) a so-called "spiking" behavior is obscrved. The burn-

ing rate periodically increases rapidly, reaches A liriit, ind then decays, in

• -" response to an apt lied, fixed amplitud , harrmonic hi eturbance. it haS yet to he

estblished wheth r this rlLfferenre car i ,ttrihi-l r t the use f different num-

erical technic uos, ,r 'n the liqhtlx' jiffeoit t t tions ;n de garding gas
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phase energy release. Too much effort should not be devoted to understandin',

the behavior of propellants under intrinsically unstable conditions. Sohe of the

assumptions upon which these analyses are based are seriously violated during

such extreme behavior, so the results obtained are invalid. The chief goal in

regard to intrinsic instability should be to determine if real propellants can ever
exhibit such behavior. Hopefully, the present theories can be utilized to deter-

mine the limiting conditions at which this behavior is incipient.

The burning rate of a metalized solid propellant is undoubtedly sensitive

to both pressure fluctuations and fluctuations in the velocity parallel to the burn-

ingsurface. All of the aforementioned nonlinear burning rate theories treat only

the pressure coupled response. The linear burning rate theory developed in Ref-

erence ( 1 ), and other linear theories References ( 16 through 20), have attempt-

ed to account for the effect of velocity fluctuations. These velocity coupling

models are crude, and have little, or no, theoretical basis. The effect of a velo-

city field parallel to the burning surface can easily be incorporated into the non-

linear models by including a velocity dependent heat flux term in the interfacial

energy balance at the burning surface. Unfortunately, there has yet to be a proven

mechanistic explanation of how a velQcity field actually modifies the surface burn-

ing rate and, or, energy release. Until physically based theoretical models of

velocity coupling are developed, and verified, the results of velocity coupling

calculations will remain speculative, at best.

The nonlinear transient burning rate model currently used in the instability

analysis is presented in the balance of this Section. The assumptions upon whi:-h

the burning rate model is based are similar to those employed in the previous man-

tioned analyses. The gas and solid phases are treated as homogenous, and oniy

one dimensional variations in the direction normal to the burning surface are ac-

counted for. It is assumed that all of the solid is converted to gas at an infinite-

simally thin interface at the burning surface; subsurface reactions are not coniO

ered. The gas phase is assumed to respond in a quasi-steady manner. The fld" >

is taken to be anchored at the surface, with uniform distributed heat release , ut
to the edge of the flame. The gas reaction rate is assumed to be a function of

pressure only, and the "nresence of metal in the propellant is not directly accounLed

f,-). The specffic heats aind thermal conductivities are taken to be constant, for

convenience, but unlike pevious nonlinear analyses the gas and propellant specific
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heats may differ. The surface pyrolysis rate is assumed to i)e giver. 5y as -

Arrhenius law modified to account for pressure coupled surface reactions. ./ith

these assumptions the calculation of the transient burning rati at a givr,n

location reduces to the solution of the nonlinear heat conduction equatlon ':.'r a

nonlinear boundary condition. For reasons of computational efficiency. ourri:'

rate solutions are not obtained at every finite difference mesh point a:it

there is burning. Instead, transient burn rate solutions are obtained as S

of axial locations; with burn rates at intermediate locations being foun ...

order Interpolation. Since the propellant cannot respond instantaneously ta -s-

turbances the axial variation in burn rate tends to be smoother than thlt of th,

flow variables, and the interpolation procedure works quite well.

With the approximations listed previously, in a coordinate .s,7stcr f-:C

to the gas/solid interface, the heat conduction equation may be written as

8T aT 'dT
7t+r )x l)

In this coordinate system the solid appears to be flowing in fror the U, t

at a rate given by r(t). The source of the nonlinearity in this equation .: th,- -

vection term r T/ x. Two boundary conditions must be jiven to compete :-C

specification of the problem. At the propellant back wall it is assume i t

temperature remains at a specified constant value, thus, the boundary on tin

there may be stated as

(_ , t) -- (

'hle boundary condition at the surface, x=O, is obtain,'i v

-.mass and energy balance for an infinitesimally thin ,ontr,)l' V :' :. . -.

the gas/solid interface (see Figure '-1). The mass naln: at ',n: s<.' !55
116 !
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where o and Ug are the density and velocity of the gas at the propellant surface.

The energy balance leads to

p rhs_ - ks =T pgUghs k L4I + (54)

in which the enthalpies on the solid and gas sides of the interface are h and
h s , respectively. The net heat released at the surface,per unit mass,is equal to

the difference between the enthalpies of the solid and gas on their respective

sides of the interface. If the quantity Q is taken to be positive when the net
s

heat release is exothermic one may write

Qs(T) =h s -h
_ S+

=c T + Ah_ -cT- Ah
55S f_ PS f+

where Lho and Ah" are the heats of formation, at zero degrees Kelvin, of the
solid and gas respectively. It is convenient to define a quantity, Qs. equal to

the net surface heat release at the steady statesurface temperature T .

Q- (T) Q = cT +A h3 -c T - 'h (5-6)s s s f_ ps f

With (5-6), (5-b) moy bc written as

(h, hs Qs(Ts)=Qs + (C Cp) (T -Ts) (5-7)

Substituting (5-3) and (5 7) into the energy balance (5-4) yields

k -) =T kg - I+ + Qm + (C -c ) (T T) (5-8)
S T p

The term k -11 Is evaluated from a solution of the gas ph.se. Subject

to the aforementioned assumptions the quasi-steady energy equation for the gas

phase is
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dT d2 T
mc d =k T+'w (5-9)p dx gd--' +,fw

where Qf is the heat release per unit mass, and w is the reaction rate times the

gas density. Integrating equation (5-9) once, applying the boundary condition
T,'x = 0 at x = and evaluating the solution at x=O yields ( 1 3 )

kx I+-C - exp (-m cp/g xWA (5-10)

which, as shown in Reference (I), is well approximated by

T+ w (5-li)
dx c mp

In order to utilize (5-i1) an expression for w must be specified. It is at

this juncture that the current model and that of Reference ( 2 ) depart. In both cases

it Is assumed that w is a function of pressure only. In Reference (2 ) it is assumed

thai w -P exp -Ef/RoTf + . However, in the present model it is assumed that the

dependency of w on pressure is the same as that in the steady state, without ever

specifying what that dependency is. The current assumption is more general since

implistic approximation to the steady state burn rdte mechanism is not invoked.

It is easily shown that the steady state solution to the heat conduction,

eqiuation (5-1) is

= exp(rx4) (5-12)

s- Ts

So, the steady state temperature derivative in the solid, at the interface, is

k r cs (T -T (5-13)
dx ss

+This is a result of assuming a simple one step, second order, reaction rate model.
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Using the interfacial energy balance, (5-6), (5-13) may be written as

kg d-+ m C (T- T)s-Qs] (5-14)

Combining (5-14) with (5-11) yields a relation for w, in the steady state

C
T s (Ts - T- s (5-15)

Qf k 5 C

r_.

In order to find w as a function of pressure the surface temperature is
written in terms of the burning rate through the assumed Arrhenius pyrolysis rate.

n
m = ps r = B sP exp(-E s/R T S) (5-16)

or, solving for temperature,

E /R
T (5-17)

I n[BsP /Osr]

The burning rate, r, is, in turn, written in terms of pressure using the steady state

burning law r = aPn+

E /R
Quasi-steady T = 0 (5-18)

s (n -n)/( )

Substitution of (5-18) Into (5-15) yields the steady state dependence of w on pres-

sure

C P2aan csE/R
w = W(P) = Q -s ] csT - Q (5-19)

Q f kg In [B s /(P a)] S s1

+-Any analytical, or empirical, burning rate law desired can be inserted into the
current model at this Juncture.
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The quasi-steady analogy to (5-19) is found by replacing P and in (5-19) w!ti

P and Qs (since Qs varies with Ts and Ts varies with P). Using (5-18) to climilnat,

Ts yields the final equation for w

2 p2s n

Qf kg Cp (ns-n s + s Qs
In SP a-I.~~ P~nBPS:n

The desired surface boundary condition for the heat conL'.ion Cquatio.

is then obtained by inserting (5-20) into the gas phase solution (5-!1), arid then

using the interfacial energy balance (5-8) to arrive at

C a cc /R6T1 = s cp -0Ts +¥ T s-
x k c (nsn+ s cs  m

Ins S----

(5 -

+ - + -c (Ts -T
k s . s

With this boundary condition the specification of the heat conductior.

problem is complete. It is convenient to introduce the following no -imnCns1oCrl

variables:

... - T
-Pt rx Rr OP TR- =- R =- @ - P

Xc r T s -T

hence, 
(5-2 .

x xc
dt= -2 dt dx -r d r =rR dT = (Ts -TM) d

The heat conduction equation (5-1) can then be written as

_ R - _ (5-23)

%14
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The back wall boundary condition (5-2) becomes

9= 0 at = (5-24)

After considerable algebraic manipulation the surface boundary condition

(5-21) can be written as

p2 1 cIq-p = nsn + I-H
I + E n P

E -

(5-25)

c S

where the following nondimensional burning rate parameters have been defined:

E = Es/RoTs (5-26)

A = E(- --- ) (5-27)
s

H = Q(5-28)c T )

The burning rate ratio, R = r/r, can also be written in terms of nondimen-

sional variables as follows. From (5-16)

nT
R = P s exp E (I-T) (5-29)

*. which, after some manipulation, can be shown to equal

R =P s A(e- (5-30)1- A (9 s l

...

d4
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In terms of the nondimensional variables the solution to the steady state

heat conduction equation, (5-12) becomes

e (5-31)

The nonlinear transient burning rate model previously outlined is solved

ro.d.ciically using the implicit Crank-Nicolson technique. The details of this pro-

rr-dtj are decrlbed in Section 6.5.

5, I Nonlinear Equation For Flame Temperature

MCP~T

mf
r--- edge of flame

, I

surface

m(cpTS Qf) g x +

Figure 5-2. Energy Balance
Across the
Flame Zone

In this section a nonlinear, nonisentropic, equation for the trans!ent flame

temperature response is developed, based on the preceding burning rate model. A

heat balance across the reaction zone yields ( see Figure 5-2).

m Qf - cp(Tf - Ts)  g-xT (5-32)

In steady state (5-32) becomes

-M[; - Cp (Tf TS)] kg .t +(-3
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Subtracting (5-33) from (5-32) yields

ag x-+ _ bx + =Cp (Tf -7 Y (Tf- Ts  (5-34)

m mfsfs

If (5-11) and (5-20) are used to evaluate kg -J+ and kgj-T+ is evaluated

from (5-14), equation (5-34) may be written as

Tf-Tf =Ts -~ Ts a2P'C c 5 / -ns ) TS+T

In Ps (5-35)

Us  cs  - Os

In terms of the previously defined nondimensional variables and parameters

*- (5-35) becomes

S P E I 1
'8 f l~ 7 'scp A [.(nsn) - 1+.P

E - (5-36)

c
+ s (1 - H)

Cp

The form of the flame temperature equation used in the numerical solution

of the equations of motion Is obtained by writing (5-36) in terms of T, rather than
0. In doing so equation (5-30) is used to eliminate the quantity (0 s-1). The re-

sulting equation is

,s ln(R/ nS) p2ns

f f E-ln(R/_Ps) T f c _ -(n nP '1
(5-3 7)

+ -E (I- H) c (1I-H)

T papt

1,13
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5.2 Linear Transient Burning Rate and B Parameter

In order to properly assess the nature and magnitude of the nonlinear burn-

ing rate effects one should compare the results of two sets of calculations in which,

except for the burn rate nonlinearities, all things are equal. The ability to carryIn t this assessment has been provided for in the current investigation by incorpora-

-)th the nonlinear transient burning rate model, previously described, and the

11[: n'Oiel derived from it, into the instability program.

The linear equations result from evaluating the nonlinear burning rate

-h rv In the limit of infinitesimal perturbations. Thus,

P1

--=(R 1 ) < < 1 (5-38)
r

e= (e5 - 1)< I'
s s

etc.

In order to obtain a linear form of the conduction equation, which could be

easily solved by the same computer code as the nonlinear equation (with minor mod-

ifications) the nonlinear term in equation (5-23) was removed, as follows. The

t-,m, R /, may be written as

r) (v + - (5-39)

The nonlinear term is

r' . , (5-40)

r

which may be written as

(R-1(-- -T) (5-41)
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-. I- %0

1 6:4 'Using (5-31) to evaluate 68/ results in

(R-l) ( e--e) (5-42)
I.•

Subtracting the nonlinear term, (5-42) from (5-23), then yields the linear form ofthe heat conduction equation

S(R- 1)e (5-43)

The other nonlinearities, which occur in the surface boundary condition,*, the Arrhenius Pyrolysis law, and the equation for the flame temperature, must
also be eliminated. To obtain the linear forms of these equations the variables
are all written as the sum of a steady state value and a small perturbation (see
5-38). Expanding the relevant equations, (5-25), (5-30) and (5-37), in Taylor
series about the steady state, keeping terms only up to first order In the perturba-tion quantities, yields the desired linear equations. Without going into the details
of the procedure, the results are

Surface Boundary Condition;r c n ] 1
Cs- + R-i)2H-

n S

(5-44)

+ (I - cp/C)/Aj

Arrhenius Relation:

R= 1 +A(@ - 1) + n (P_- 1) (5-45)s s
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iei

Flame Temperature:

T p 1

S Tf
(5-46)

+ (R - 1) s P - H)

The steady state solution (5-31) and back wall boundary conc;.tion (5-24)

are indentical in the linear dand nonlinear cases. This set of linear equbtions and

boundary conditions can he solved as is, however, in order to facilitate the task

of reldting the present results to those obtained from other, similar, or equivalent,

linear models (such as the linear model developed in Reference 1) the often used

parameter, B, is introduced.

Tho parameter, B, is defined in Reference I as

B-l1 [A(I - H) + --P EA + (5-47)

where

=QfkTw (5-48)

ps

Substituting (5-15) into (5-48), and the result into (5-47) yields the de-

sired relation for B

B = j 2A(I - H) + = 2(I - H) + p

Acs csA

In terms of B the linear surface boundary condition and flame temperature

equations take the following somewhat simpler forms.
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* surface Boundary Condition:

n

I +nAP ) B S + (R - 1) (1- B + 1,/A) (5-50)

* Flame Temperature:

1+ - -S B (R-1 ( 1)](5)

Tfc E

The equivalency of the present linear equations to those used prevliously(1)

is now relatively easy to establish. Forinstance, equation (5-51) is easily shown

to be identical to the equivalent equation in Reference 1.
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6. NUMERICAL CONSIDERATIONS

The numerical methods used to solve the equations of motion and their

associated boundary conditions are described herein, as is the numerical technique

utilized in solving for the nonlinear transient burning response of the propellant.

6.1 Finite Difference Method For Solving The Equations Of Motion

When the method of characteristics was selected as the numerical tech-

nique in Reference 1, the nature of the transient burning rate analysis was unknown.

As is turned out, the need for pressure histories at fixed axial locations was satis-

fied by interpolation and rectification of the characteristics mesh at each time step.

These extra calculations which increase the solution time and adversely affect the

accuracy of the results, are not required if the computations are initially perform-

ed in a rectilinear mesh. Finite difference methods for hyperbolic equations are

normally designed to operate with such a mesh, and, hence, are attractive for

solving the equations of motion. Finite difference methods are also, in general,

more efficient than the method of characteristics.

Shock waves are not usually observed in actual solid rocket motors which

are naturally (spontaneously) unstable, and are only infrequently observed even

when motors are subjected toartificial pulsing. Thus, shock waves were only a

secondary concern in the present investigation. In the absence of shock waves

the adequacy of the computed results is not critically dependent upon the choice

of finite difference technique. Hence, an intensive evaluation of the relatively

large number of existing finite difference methods was not carried out.

The available difference techniques can be differentiated on the basis

of accuracy, i.e., first order, second order, third order truncation error; and by

type, i.e., explicit or implicit. Third order methods were not seriously consider-

ed because, for the present problem, their full inherent accuracy cannot be realized

(the transient burning rate calculations cannot be efficiently performed to equilva-

lent accuracy) to offset their added complexity. First order methods were also

eliminated. These methods are the simplest, and are attractive for that reason,

however, second order methods are considerably more accurate, without being

unduly complicated.
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The bulk of our attention was, thus, devoted to second order techniques.

lmpltcit methods such as those due to Gary, 2 1) Gourlay and Morris ( 2 2 ) and Mas-
(23)son are more involved, both from a program development, and computational

standpoint, but have the advantage of being unconditionally stable. Explicit

method are simpler, but are subject to the Courant-Friedrichs-Lewy (CFL) stability

criterion given by(24)

(Jul + a) - -- < 1 (6-1)
Ax

which limits the size of the time step which may be taken. It was decided to go

with explicit methods since their relative simplicity allows one to easily change

from one method to another. This flexibility was deemed to be advantageous since

with nonlinear problems it is impossible to predict, ahead of time, all at the pit-

falls which may be encountered with a given method.

After considering a number of second order explicit methods including[" ~~~(5 ,L-enof (2 6 ) ,Bstn (2 7 ) ,

. those due to Mc Cormack (25)LaxWendroff Rubin and Burstein and
Morris(22) (27)

Gourlay and, Rubin and Bursteins '  method was selected as the

first method to be tried. The Rubin and Burstein technique has performed admit-

ably in the present appli ation. No numerical problems attributable to the use

of this method were encountered during the course of this study. As a result

the other methods were never fully evaluated.

In principle, .nite difference methods of the type considered, and select-

ed, are applicable to flow problems containing shock waves, provided the conser-

*' vative form of the equations of motion is utilized.* With these methods a shock

*. wave is not treated as a discontinuity. Instead, the discontinuous jumps asso-

ciated with the shock front are smeared out over several mesh points. If the shock

*In two phase flow problems only the gas equations need be integrated in conser-

vition form. The particle flow properties are not discontinuous across a shock

wavo, hence, the simpler non-conservative particle equations can be utilized.,
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wave is too strong, or too few mesh points are employed, spurious oscillations
are observed in the finite difference solutions, especially on the downstream

(high pressure) side of the shock. The magnitude of these spurious oscillations,
for a given shock wave, is quite dependent upon the exact nature of the finite dif-
ference method. One of the reasons for selecting the Rubin and Burstein method
was the authors' contention that their method was superior in that respect. In
many applications( 28 ) a so-called "artificial viscosity" is employed in conjunc-

tion with these finite difference methods. The function of this "artificial viscosity"

being to damp, or entirely eliminate the spurious oscillations in the vicinity of
the shock wave. The use of an artificial viscosity would not be appropriate in the
present application, however, since there are real physical dissipative mechanisms
resulting from the interactions between the particles and the gas. Thus, it would

be quite difficult, in this case, to separate the real and artificial dissipative

effects.

As stated earlier, flows containing shock waves were not the immediate
concern of the present investigation. No direct attempts to calculate such flows

were made during this investigation. Shock waves, accompainied by spurious

oscillations, did appear, by chance, towards the end of some nonlinear particle
damping calculations, however the mesh sizes employed in those calculations was
far too large to expect that a shock wave could be adequately treated. Thus, the
ability of the present technique to handle flows containing shock waves has yet
to be adequately tested. If solid rocket motor flows containing shock waves
should become of practical interest, and should the present method fail, or be-
come inordinately inefficient, in such cases, other techniques could be incorpor-

ated into the program.

The instability analysis reported in Reference 2 is quite similar to the
present analysis, in most respects, however, the authors were more concerned

about the presence of shock waves and opted to use Moretti's shock tracking

method. This method results in a much more comples, and inflexible, code, how-
ever, its success is evidenced by the results achieved( 1 5). A simpler approach

that holds promise of being able to adequately treat shock waves is the flux con-
trolled transport difference method recently developed at NRL
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Before presenting the difference equations obtained using the Rubin and

urstein method, it is convenient to first write the equations of motion in short

hand notation.

Gas Equations (conservation form)

-F + G Z (6-2)

where F, G, and Z are the following vectors,

pA

F puA (6-3)

p[ + .T + A

puA

GIN + Ou A (6-4)

- d [ +
+ A  

u] -

'I (6-5)
T+ F +

1 2 Pi Pi

c£ U (Tp -Tpi +- I -u
sy i 2p s i
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I.I

-o. Particle Equations (non-conservation form)

bF 1 6F.
+ A I = Z. =l... N (6-6)

bt i x I

where F. and Z are vectors and A. is a (3x3) matrix,='1 1 1

F. u (6-7)
1 Pi

TPi

u 0 0Pi Pi

A.= u o (6-8)
Pi

0 0 u p.

8 pPi P dA
A

Z- FPi /Pi (6-9)

- Q i/CPi

The Rubin and Burstein method is a second order predictor-corrector technique.

An unusual characteristic of the method is that the predicted and corrected quan-

tities are both evaluated at the full time step, as shown in Figure 6-1.

The finite difference solution to equation (6-2) is given by

Conservative Difference Equations

- lk+ j ,k I z +l k + jk Z (G J+ I, k - G j k )

Fj+1/2,k+2 2 Ax (6t1
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z--z -. /-( - +

z 2 k+l j+l,k J-1,_k)
=F + - t-Zk + zI/ 2 'k-l+

j k+l J= F 2 , 2 2Ax

(G +/2,k+l / 2 k+l) (6-11)
Ax

whcere , denotes predicted quantities, k refers to the old time, t, and k+l is the

,Idvoncei timo t+t.

o Known point

t [ Predicted point

_ Corrected point

kx

j-2 J- j+-i J+2

Figure 6-1. Finite Difference Mesh for Rubin and Burstein Method

I

The finite difference solution to equation (6-6) is as follows,

Non- Conservative Difference Equations

Fj1 +F z + Z
~ Fj J,k +At j+l,k + Z k_

Fj+l/2,k+l 2 2At [ ' (6-12)
(A+I, _ + Ajkk

(A Ak) (F+l- Fkl
2 5x
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Z ( Z.)-= .+/2 kk--( F 1 k)

F F + + 1-, k+l -A J+l, kJj,k+1 k 2 J,k + Z j,k 2Ax (6-I 3)
_____________ F F(6-13)
(A +1/2,k+l +Aj-/2,k+l (FJ+/2k+1- F-Ik+l

2 Ax

The difference solution to the conservative gas equations (6-10) and

(6-11), yields values for the conserved quantities given by (6-3). The usual flow

variables are then calculated from these quantities as follows,

F 
2

u = F2  (6-14)

F1

1  2(6-15)
a 

3

pressure being obtained from the perfect gas law (2-35).

The successive application of equations (6-10) to (6-16) yields the re-

quired solution at all mesh points lying between the boundaries of the problem, as

illustrated in Figure 6-2.

There are four types of boundaries that may be encountered. Left hand

boundary points located at the head end of the motor. Interior boundary points, in

pairs, since these"boundaries" denote the locations of discontinuities. A quasi-

steady nozzle boundary point, located at the nozzle entrance, if the quasi-steady

boundary condition is invoked; or a nozzle exit boundary point, if the solution is

continued out to a supersonic exit plane. The numerical procedures utilized to ob-

tain solutions at these boundary points are presented in the Sections 6.3 and 6.4.

6.2 Numerical Stability and Its Influence On Computation Time

A linear stability analysis of the present finite difference technique(27)

yields the expected Courant stability condition, given by (6-1), for a single phase

system. In nonlinear problems, (6-1) is a necessary, but not sufficient, condition

for stability. In the solutions obtained to date nonlinear numerical instability

effc':ts have not ben encountered.
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I1.

0 Known 0 Unknown A Only if solution continued
A a to supersonic exit plane

AJ

t+6t 4 - - -3 .

Left 11dy. Interior Bdy. Int. Bdy. Nozzle Exit
(Hlead End) (Discontinuities) or Quasi-steady Plane (if

Nozzle Bdy. Applicable)

'i ,ure 6- 2. Status of Solution After Finite Difference Sweep

6
For the combined, particle-gas, two phase flow equatiois the CFL con-

dition (6-1) is also necessary, but not sufficient, for stability. A formal stability

inalysis of the two phase flow equations has been carried out in Reference 31.

The particle momentum and energy equations (2-32) and (2-34) can be written in

the form :nalyzed in Reference 31 as follows,

Du F
Pi P

- (6-17)
Pi

1p 1
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DTPi QPi
Dt (6-18)

or, using (2-39) and (2-40)

Du (u - u)

. __ P (6-19)Dt "rv

DT (T - T)
P. p.Pt 

(6-20)Dt $

where rv , the velocity relaxation time (time interval required for particles to

approach the local gas velocity), is given by,

a* P* D*2

T f m (6-21)
Re2/3)

18L*g.* (I+ 6

and, TT' the thermal relaxation time is given by

a* i* D .2 cPr

T = . 3 (6-22)
6L*. *(2+.459 Rei "r .

For explicit integration methods,it is shown in Reference 31 that equations

of this type are subject to the conditional stability criterion

At< I T (6-23)

where c 1 is a constant depending on the type of explicit method utilized, and T is

the time constant for the system. For second order methods, like the present one,

the constant c I is normally about unity. Thus, in addition to the CFL condition

the present integration method is subject to the following approximate stability

conditions

At< T

(6-24)

At < T
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On(-, )r the other, of this conditions will be more restrictive. The ratio T./ v is

li.213
Re.2/

T 3cPr(l+ I )
T= 6 (6-25)

v 2+.459 Re, 5 5 Pr' 3 3

3cPr
in Stokes flow limit.2

If rr v > 1 the momentum equation controls the stability of the sy ;tem, or, con-

versely, if r .rv< I the energy equation is controlling. From (6-21) and (6-22)

it can be seen that, regardless of the controlling equation, the allowable step

;ize decreases when L* (essentially the length of the motor) and Re. increase.I

Our experience, to date, indicates that (6-24) is a reliable stability condition for

this problem to within about 10%.

The relative efficiency with which an instability solution may be ob-

tifned is critically dependent upon the stability conditions given by (6-1) and

(t-24).

the minimum value of Ax for the meshrain

N = the number of mesh points in the axial direction

N = the number-of wave cycles for which the solution is to be
yc c mputed

M m-iximum value of mach number within the flowfield
max

't a the m<tximum time step allowed by combined stability con-
max ditions

The sound spcpd does not vary significantly in the motor so (6-1) can

qe ipproximated h r

_tCFL min (6-26)
max (+M

max

sin-e the smAlest step is likely to be used in the throat region where M :M maxe

Assum Inc ,t does not vary much with time the total number of mosh point ca.-
5ix
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culations that will be made in N wave cycles is approximatelycyc

2 cyc(l+Mmax NAx
NTt c max Ax (6-27)

Am in

or, if Ax is constant throughout the mesh,

2 N (I+M
Ncc max )  (6-28)

Thus, as a result of the CFL condition, the size of the smallest axial

step has a profound influence on the total computation time required to obtain a

solution. If, uniform axial steps are used (6-28) shows that the computation time

will quadruple if Ax is reduced by a factor of two. The reason quasi-steady nozzle

solutions are so much more efficient than solutions continued all the way through

the throat is quite evident from the relations. In most solid rocket motors the

nozzle usually represents, at most, 10% of the total length of the motor. Since

the flow gradients are quite large in the nozzle, especially in the neighborhood

of th3 throat, the axial step size required to obtain relatively accurate solutions

tend, to be rather small. Typically, the smallest step size (or step size, if .,x

is constant) will be on the order of 1/50 the length of the nozzle, or about 1/500

the length of the motor. Thus, 6xmin .002 in this case. Even with variable

step size NiAx will run on the order of 100, and at the throat Mmax ; 1; so, for

solutions out to the nozzle exit plane, equation (6-27) yields

NTot 200,000 Ncyc  (6-29)

For a quasi-steady nozzle calculation, typicallyAxmin= Ax .02, and

M << 1. In this case (6-28) yields
max

N Tot '5000 Ncyc  (6-30)

Or, in other words, the solution time for the equations of motion is roughly about

40 times faster when the quasi-steady nozzle assumption is utilized. In calcula-

158



ting the steady state solution for a motor only the equations of motion are solved,

so this factor of 40 is representative of the relative times required to obtain the

two types of solutions. In the instability solution, itself, much of the computa-

tion time is devoted to solving the transient burning rate equations at a series of

mesh points. The total computation time for the burning rate solutions tends to

run about 2 times that required for solving the quasi-steady nozzle fluidynamic

problem. As a result, instability solutions carried through the throat take about

15 times longer than the equivalent quasi-steady nozzle solution.

Equations (6-26) to (6-28) represent the results imposed by the CFL

stability condition. The two-phase numerical stability criteria (6-24) must also

be satisfied. If

Axmin
(l+Mmax)

or (6-31)
Ax rax in

T< (I +Mm)
max

the maximum allowable time step is less than that given by (6-26) and the total

number of mesh points to be calculated per cycle will increase. Forinstance,

if either of the relations (6-31) is true, and the particle size is halved, the solu-

tion time for the equations of motion will quadruple.

Assuming for the moment that r
Assmin fo th moenttha Tv < rT (see (6-25)), and taking typical

numbers for a* (4000 ft/sec), o* (7.76 slugs/ft3 ), and A* (1.85xi0 -6 lb. sec/ft2)
f m •

equation (6-21) is, approximately (for Re << 1)
I

.OID' (microns)
i (6-3 2)rv L* (ft)

Thn ratio of (6-32) to (6-26) determines which stability condition is controlling
the maximum allowable time step.

__v  .01(l+Mmax) D i(microns)

KtCFL Ax minL*(feet)
max
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Figure 6-3. Stability Limiting Particle Size
Versus Motor Length

Figure (6-3) shows the particle size, D , at which the allowable

step size begins to be controlled by the two phase stability conditions, as a func-
tion of motor length. The previously mentioned values of xmin and M formax
typical full and quasi-steady nozzle calculations were utilized. For particle
sizes below D the allowable step size will decrease as the particle size

t limit
squared,

Max. time step when D < D
i limit

t =lm (6-34)mx max \Dlmt

For example, from Figure (6-3) and equation (6-34) one finds that for
a quasi-steady nozzle solution in an 8 foot motor with 2 gparticles, the allowable

At is one-quarter the CFL limiting time step; or in a 100 foot motor with 2 W particles
At = tmaCL50. When full nozzle solutions are calculated the CFL limiting time
step is so small the two phase stability limit is of much less importance. For-
instance, At for full nozzle solutions is not influenced by the particles until

max
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h,1. *otOl .ceeds about 100 feet in length for 3 u particles and 40 feet in length

for 2 M. particles.

When an explicit finite difference method was selected for use in the

instability solution the ramifications of the aforementioned stability conditions

were not fully appreciated. As a result of the previous discussion it is evident

that solutions continued through the throat, or solutions for large motors with

small particles, could be obtained much more efficiently with an implicit finite

difference method. Implicit methods are unconditionally stable, hence, the size

of the Integration time step is governed solely by truncation error considerations.

6.3 Head-End and Nozzle Boundaries

It Is possible to postulate a large number of numerical techniques by
which solutions may be obtained at the boundaries. These include various types
of extrapolation and one sided differences, as well as the method of characteris-

tics. As discussed in Reference 32, the method of characteristics is the prefered

method for handling the boundary conditions. It is more accurate and general than

the other techniques, mainly due to its uniqueness and consistency. By uniqueness

it is meant that when treated by the method of characteristics the number of avail-
able equations at a boundary point is exactly equal to the number of unknowns.

When extrapolation or one-sided differences are employed the number of available

equations becomes redundant, i.e. there are more equations to choose from than

there are unknowns. The solution at the boundary is, therefore, not unique, but

is dependent upon which of the available equations is arbitrarily dropped.

The other factor, consistency, refers to whether or not the numerical

method implies a violation of the signaling, or information transfer rules, for a
compressible flow. By definition the method of characteristics is consistent, as

information is carried through the flow ilong the characteristics. The other methods

iro inconsistent, to varying degrees. The chief virtue of one sidedt differences,

ind, especially extrapolation, is simplicity. Conversely, the only drawback to

the method of characteristics is the additional analysis and programming required

I() i tilement it. In many c-af-es, despite their redundancy and inconsistences,

one ;ided differences and/or extrapolation can yield acceptable results. In suc-h

risr,, their simplicity warrants their use. In other cases, the mcthod of c-haracter-
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istics must be utilized to obtain acceptable boundary point solutions.

In the present problem the only boundary at which a non-characteristic

method is completely acceptable Is the supersonic exit plane. At this boundary

there is essentially no back information transfer to the domain of interest, hence,

errors made at this point do not measurably influence the computation. One sided

differences are currentli' employed to compute points at the nozzle exit. At the

head-end, closed boundary, one sided differences are better than extrapolation,

but not completely acceptable, so the method of characteristics is utilized. At

the interior boundary points, discussed in Section 6.4, both extrapolation and

one sided differences are numerically unstable. The method of characteristics,

however, yields stable and accurate solutions at these points.

Head-End. No End Burning

As previously mentioned the method of characteristics is utilized at

this boundary. Curently, a first-order solution is obtained using simple Euler

integration along the characteristics. Second order solutions could (and possibly

should) be easily obtained by using modified Euler integration. The boundary con-

ditions at this boundary are, from equation (3-15), u = u = 0.

The finite difference form of the characteristics equations (2-41) to

(2-48) are used in the manner illustrated in Figure 6-4, in order to obtain a solution

at the left boundary. The solution is known at points 1 End 2 at time equal t, and

Is sought at point 3, at time equat t + At. Point ' represents the location where

the left running characteristic through point 3 crosses the line time = t. As a re-

sult of the CFL stability condition (6-1), point l' must be between points I and 2.

On the first iteration the velocity, ul, and sound speed, a1,,are set equal to the

respective quantities at point 1. The first step in the solution is to locate point

1' using (2-41) for a left running characteristic (minus sign).

x x- (u I , - al,) At (6-35)

All of the flow and geometrical properties at point ' are then established by linear

* interpolation. The pressure at point 3 is then found from the compatibility relation

(2-42) as
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P 3 P1 1 +YQ 1 al, (RHS-At + U3 - U11 ) (6-36)

where u3 =0, as a result of the boundary condition, and RHS- is equal to the right

hand side of (2-42) evaluated at point 1'.

When there is no end burning the line x=0 is a streamline, and if par-

ticles are present, a particle path line. The temperature at point 3 is then found

from (2-44) as

T3 -T 2 +I [RHS t + )(P3 - P2 ) (6-37)

where RHS is equal to the right hand side of (2-44) evaluated at point 2. If there

are particles present up, Tpi and p P are calculated from (2-46), (2-47) and (2-48),

respectively.
F
Pi

u U At (6-38)Pi P

3 2  .i2
Q *2

T = T A t ( 3 9)
P3  P 2  i2

+0 L2 pp d(Pl P2 )+ A._P2{ At (6-40)

P3  P 2  Lp2  X1 -2 2

At this point the density at point 3, P3i Is found from the perfect gas law (2-35)

and the whole solution is reiterated startinc with the newly calculated values of

a,, and ul, (Note: this iteration does not iriprove the theoretical accuracy of the

calculation, it remains first order; however, it !s found that, in practice, better

resu~ts are achieved). At the conclusion of :he boundary point solution the con-

served F quantities, defined by (6-3) are calculated, for use in the next finite
[[]]""difference Integration step.
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Head-End, End Burning

The method of characteristics solution at the head end, when there is

end burning, is at once, simpler, yet more complex, than its inert counterpart.

(See Figure 6-5). The solution is the same up to the equation for P 3 , (6-36).

When tLere is end burning u3 equals the velocity of the gases leaving the surface,

us . At this point, the boundary conditions (3-16) that need be applied yield the

values for the remaining variables,

T3 = T (6-41) u =u (6-42)

Pi'3T = f (6-43) Op =Bp (6-44)II 3  3

/,3 3

V4

0.F.

LetBunay-N n Left- BonayTEdBunn

-L2 1 1 1'2

Figure 6-4. Characteristics Mesh at Figure 6-5. Characteristic Mesh at
Left Boundary--No End Left Boundary--End Burning

Burning

The potential complexity derives from the fact that the properties of the

combustion gases leaving the surface, u , Tf etc. depend upon the pressure, P3

and vice-versa. When such coupling exists, solutions may be obtained by itera-

tion, or, as in the present case, by making a simpliftying assumption. Currently,

the calculation is uncoupled by replacing that the properties of the combustion

products leaving the surface at t + At by their counterparts at time = t.
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Quasi-Steady Nozzle Boundary

When the nozzle is treated in a quasi-steady manner the right hand

boundary is treated in much the same manner as the head end. In this case, how-

ever, the left running characteristic is the missing one, and the boundary condi-

tion fixes the mach number at the nozzle entrance such that the flow wUl choke at

the throat. Another difference at the right boundary is that the streamlines and

particle paths through point 3 are not known, a priori, as they are at the head end.

The points and characteristics used in the right hand boundary point

solution are shown in Figure 6-6.

Ax ---- 3

At

&I

1 1' 4 5 2

Figure 6-6. Characteristics Mesh at Quasi-Steady
Noz. 'e Boundary

Point 1' is located by tracing the right running characteristic through

point 3 back to time = t.

xI, = x 2 - (uI, + al,) t (6-45)

On the first iteration only Lil, and al, are set equal to uI and. al, respectively.

The flow and geometrical properties at point l' are established by linear interpo-

lation; The pressure at point 3 can then be found from the compatibility relation

for a right running characteristic equation (2-42) (plus sign).

!-35



P3 
= PI +Ypl'al' (RHS+At - u3 + U1 1 ) (6-46)

where RHS is equal to the right hand side of (2-42) evaluated at point 1'. The
velocity at point 3, u3 , is taken to be equal to u 2 on the first iteration, thereafter,
u3 is found from the mach number boundary condition, once T3 has been established.

The temperature at point 3 is found using the streamline characteristic

(2-43). Point 4 is located as

x 4 =x 2 - u4 At (6-47)

The other properties at point 4 are found by linear interpolation, T3 can be cal-

culated from (2-44) as

T3 = T4 + RHS tt + (Y )(P3 - P4 ) --L (6-48)

where RIIS is equal to the right hand side of (2-44) evaluated at point 4. The sound

speed at point 3 is then

a 3 = (T 3 ) (6-49)

The boundary condition, and perfect gas law then yield, respectively,

u3  a 3 Me (6-50)

03 P/T (6-51)3 33

If particles are Presentpoint 5 is then located using the equation for a particle

pathline (2-45)

x 5 =x 2 -u s At (6-52)
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11he quantities u , T and p may then be found from the compatibility rela-
P1  Pi Pi

3  3 3
tions (2-46) to (2-48) in the manner indicated in (6-38) to (6-40), by replacing

point 2 with point 5. The discussion given after equation (6-40) is, again, per-

tinent at this point.

3upersonic Nozzle Exit Boundary

As indicated previously, no boundary conditions need be satisfied at

this point. The equations of motion are integrated at this boundary using a one

-,Jed, second erder, difference approximation for the x derivatives. Let y stand

for any quantity, then the derivative at the boundary is given by

3a - -1 1-2 (6-53)

The relation assumes that the axial step size x is constant. The gas properties

' are found by integrating the equation in conservation form (6-2) as follows

F' .(t+At) = F (t) + (Z (t) -t (6-54

., The solution for the j th particle group is found by integrating (6-6)

Fj 1 (t+At) = F 1 (t) + (Z, (t) - A 1  
) At j = I...N (6-55)

The time integrations in (6-54) and (6-55) are accurate only to first order. The x

derivatives In these equations are evaluated using (6-53).

6.4 Interior Boundary Points

i As discussed in Section 2.5, interior boundary points are located at

axial stations corresponding to gaps in the grain. At these locations the burning

rate and area may be discontinuous, therefore, the jump equations (2-49) to (2-55)

are required in to obtain a solution at such points. An alternative use of interior

boundaries is to separate regions of different step size. The axial step size must
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be constant within each region, but may vary from region to region. If the axial

gradients are much larger in a given section of the motor (usually the throat sec-

tion) than elsewhere, the section may be treated as a special region with corres-

pondingly smaller axial steps. This Is somewhat more efficient than using the

smaller steps throughout the motor, however, as discussed in Section 6.2, the

overall efficiency of the calculation is mainly controlled by the size of the smal-

lest step. If an interior boundary is created as a means of changing step size

alone, the solution procedure outlined below reduces to the normal method of char-

acteristics field point solution; the jump equations are trivial (no jump) in such

cases.

An interior boundary point is really two points, one on each side of the

discontinuity. The method of characteristics, in conjuction with the jump equations,

Is used to obtain solutions at these points.

At a general interior boundary point the unknowns are p, u, T, P, w,

P , u and T on both sides of the boundary. If there are N particle groups the
p1  p1  Pi

total number of unknowns Is equal to 10+6N. The same number of equations must

be available if there is to be a unique solution. There are 3+N characteristic lines

which intersect the boundary, along which there are 3+3N compatibility relations

(the particle pathline is a triple characteristic, given the quasi-characteristic

form of the particle continuity equation). An additional 3+3N equations come from

conservation of mass, momentum and energy for the gas and particles (Jump equa-

tions). The remaining four equations are the perfect gas law and the heat conduction

equation (for w), on both sides of the boundary (wmay be zero on one or both sides

of the boundary).

Unlike the simpler head-end and quasi-steady boundaries, many dif-

ferent flow situations may exist at an interior boundary. The number of situations

being a function of the number of particle groups. Figure 6-7 illustrates the four

characteristic diagrams that are possible when there is one particle group. There

Is always one left running and one right running characteristic intersecting the

boundary as shown. The differences are created by the signs of the gas and par-

ticle velocities. If the velocities are positive the streamline or pathllnes carry

information from the left side to the boundary, and if the velocities are negative,

the directions of these characteristics is reversed. Since, in general, the par-
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Figure 6-7. Four Possible Characteristic Diagrams at an
Interior Boundary, With One Particle Group



ticle velocity may lead or lag that of the gas, the gas may be moving in one dir-

ection and the particles in the other direction.

A general solution to the interior boundary problem has been formulated,

however, which allows all of the possible flow configurations to be treated in a

unified manner. The unified jump equations, and their solution, are presented

first, following by a discussion of the overall solution procedure.

Unified Gas Jump Equations

Equations (2-49) to (2-51) may be rewritten in the following general man-

ner, so that they apply to all possible geometric and flow situations. The follow-

Ing definitions are made:

1 subscript denotes the point on the left side of the boundary.

2 subscript denotes the point on the right side of the boundary.

A2

or u_0 Let: s=l, AR= J=l, j+1=2 (6-56)

A1

for ul< 0 Let: s=-l, A = 2, J=2, J+l=l (6-57)

for. AR 1 Let: a=O, b=1 (6-58)

fo: AR< 1 Let: a=l, b=0 (6-59)

The general forms of (2-49) to (2-51) may then be written as follows, (using rM=

puA, and P=pT).

Mass: mj+ s e mj+l (6-60)

r-. T. a •_•_ + I T( +) A __ (6-61)
Momentum: A' + rn uj + se U u e u

ese Uj+l' A b
R
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+ s m r-+ (6-62)
Enrgy: _ + 2 ey-I j+l Y-I 2

Equtions (6-60) to (6-62) can be directly solved for the quantities at J+l. The

solution is

= + s r (6-63)j + l e 1 /

u = , - 4 (1Y-2)K 8r; +1  (6-64)
(2-K) rj;1

Tj+ 1  (y -1)- 2 (6-65)

-2LLJ+ (6-66)
j+l

where the following quantities are defined

C=LLA'+ u +s m u (6-67)
uJ' R e se s

Tf

K =(C) (6-69)

Unified Particle jump Equations

The general particles jump equations are more easily solved. With the

following definitions

u 0 s = J 1, j + 1 =2 (6-70)
PiI

!The definitions given for , , and K apply only to this analysis, they have other
.menings elsewhere.
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u <0 s- j=2, ji + 1 = (6-70)

the general forms of (2-53) to (2-55) can be directly solved for the variables at
J+l. The solution is

m =m + s 8 rn (6-71)Pji Pi.

rn u + s 8 m e u
Pij Pij e ps.

u e (6-72)
Pi j+1 m 

P. j+l

pm T_1Tp2+- ) + s8. r;

' Se 1T£ c u  (6-73)
Iv Pj+1  m; Pi+ij+IJ

) +1 (6-74)
ij+1  u A j+1A +

General Boundary Point Solution

The general solution at an interior boundary is obtained by combining

the method of characteristics with the jump solutions previously given. The char-

acteristics solution is carried out using back values at time = t,only, hence, i:

is a first order solution. With a first order method the solutions for the gas and

particles may be uncoupled. In the present case the solution for the gas phase is

obtained first. There is a problem with regard to the evaluation of me , us and
e

Tf vhen uninhibited end burning takes place at an Interior boundary. The flow
e

- in the neighborhood of a gap in the grain is subject to both two dimensional and

viscous effects. It is, thus, difficult to characterize the pressure on the end
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burniti lice in a one-dimensional, inviscid, model. Here again, an assumption

has to te made. Presently, for the purpose of calculating burning rate only, it is

assumed that the pressure on the burning face is equal to the pressure at the end

point of th-e adjacent lateral burning surface. For the example shown in Figure

6-8 the pressure on the end face is assumed to be Pl. the pressure at Point A.

It is further assumed that since P face=P , the burning rate and flame temperature

solutions at point A can be used to characterize rme, us and Tf . This assump-
e e

tion neglects any difference in erosive effects between the two locations. These

aforementioned assumptions were not necessary, but they are reasonable, and

allow a solution to be obtained more conveniently. Should it prove to be warrant-

ed, other treatments of the uninhibited end burning can be considered.

_iA A
Latera P A, etc. P2

o A2 , etc.
Surface

Burn Rates of Uninhibited End Faces Assumed Equal
to Burn Rates at Respective "A" Points

Figare 6-8. Uninhibited End Burning Model

A solution for the gas phase may be directly obtained by solving the

complete set of nonlinear algebraic equations generated by the combination of the

jump equations, (6-60) to (6-62), and the characteristic compatibility relations.
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This approach yields the solution on both sides of the boundary by simultaneously

solving all of the equations numerically. A means of utilizing the closed form

solution of the jump equations, given by (6-63) to (6-66), has been developed,

however, obviating the need for a numerical solution of these nonlinear algebraic

equations. The closed form gas jump solutions yield all of the gas variables on

one side of the boundary when all of these variables are known on the other side.

Unfortunately, the characteristics equations do not allow all of the gas properties

on one side of the boundary to be calculated directly. As shown in Figure 6-7

there are always two gas characteristics on one side of the boundary, and one

characteristic on the other side. Therefore, an indirect, iterative, approach has

been developed. First, the side on which there are two characteristics is deter-

mined from the sign of the gas velocity at time t. An initial estimate of the velo-

city on this side of the boundary, at time t+At, is then obtained by three point

extrapolation. Between the velocity estimate a.d the two characteristic equations

there is enough information to calculate all of the gas properties on one side. The

jump equation solutions are then utilized to calculate the properties on the other

side of the boundary. These gas properties must satisfy the remaining character-

istic relation, to within a specified tolerance in order to claim a complete solution.

In general, this characteristic relation will not be satisfied by the solution ob-

tained using the first estimated velocity. The initial velocity estimate is then

varied, and the solution repeated, until the remaining characteristic relation is

satisfied. A modified secant technique is used in order to speed the convergence

of this Iterative procedure. The details of this procedure are given below.

Figure 6-9 shows the two possible situations which may be encountered

at an interior boundary located at the J th mesh point. If the gas velocity is posi-

tive there are two characteristics on the left side. If the velocity is negative the

streamline intersects the boundary from the right ;ide. By defining the following

quatities a single characteristic solution can be n ade to apply to both c&ises.

u _0 Let: 1 subscripts denote point J-1
2 subscripts denote point J

2p subscripts denote point j+l at time t

lp subscripts denote point j+2

3 subscripts denot point t
3p subscripts denote point J+l at time t+0

s=l

b.1

4
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u.< 0 Let: 1 subscripts denote point j+2
2 subscripts denote point j+1
lp subscripts denote point j-1 at time = t
2p subscripts denote point j (6-75)

3 subscripts denote point j+1 at time =

3p subscripts denote point Jt

s=-1

The vj!ue of u 3 is obtained by extrapolation from the adjacent interior

points previously obtained using the finite differece technique. The pressure and

temperature at point 3 are then obtained in the manner shown for the quasi-steady

nozzle boundary, but with a slightly generalized form of the characteristics equa-

tions. An explanation of the characteristic solution procedure may be found in

Section 6.3. Only the final equations which differ from those used at the nozzle

boundary are given here.

= x3 - (u I , + als) At (6-76)

P3 =P 1 , + Y P 1,a, [RHS(S) .6t - s U ,)] (6-77)

where RHS (s ) is equal to the right hand side of (2-42) evaluated at point I' with

the + signs evaluated according to the sign of s. The temperature at point 3 is

found using (6-47) and (6-48). Density and sound speed are calculated from

(6-49) and (6-51), respectively.

A relation to be used after the jump equations are solved to check the

validity of the Interior boundary calculation is then obtained from the compatibi-

lity relation along the remaining characteristic. Without going into all of the de-

tails, the relation is,

P3p =c + c u (6-79)
3p 1 2 3p

whore c I and c2 are constants which depend on the values of the gas parameters

at point lp'.

With u 3 'P3 'T3 and r 3 ,-s obtained above, equations (6-63) to (6-66)

ire used to 1cute u3p, P3p T3p and 3p (one should ec uate 3 here, with j in
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j -1 ]+1 j+2 i- ] +1 j+2
12 2P 1P 1P 2P 2 1P

u > 0 u < 0

Figure 6-9. Gas Phase Characteristics Solution
at Interior Boundary

the jump equations, and 3p should be equated to J+l). The values of up andPp

so obtained, are checked to see if they satisfy (6-78). If

P 3p - ClI - c 2 U 3p < specified tolerance

a solution has been achieved. If not, a new value for u 3 is selected and the pro-

cedure is repeated.

The particle solution at the interior boundary points Is obtained after

the gas solution is completed. Since the particle pathline is treated as a triple

- characteristic u pi , T pi and p Pi can be directly obtained or, the side of the boundary

• " which the pathline intersects. If the definitions given by (6-75) are miade for

U 2t0 and u < 0, the equations used to calculate the particle solution at a quasi--
Pi Pi

steady nozzle bo:undary point can be utilized directly to solve for tiie particle vari-

ables on the side of the boundary whete the pathline is located--. Die generalized

solution for the part cle jum equations, equations (6-71) 0o (6-74), then yields

the particle solution on the ot:her side of the boundary.

6.5 Transient Burning Rate Sol ution

The nonlinear transient burning rate response is obtained by solving
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-'' iondiniensional heat conduction equation (5-23), subject to the boundary con-

diltions (5-24) ate=w, and (5-25) at the burning surface. The steady state solu-

tion, used as an initial condition, is given by (5-31). Once the burning rate has

been found, the flame temperature is calculated from (5-37). Alternately, linear

transient burning rate solutions may be obtained by using (5-43), (5-50) and (5-51)

in place of (5-23), (5-25) and (5-37).

Transformed Equations

The temperature gradients in the solid are greatest at the surface and

decay exponentially with distance into the solid. For this reason it desirable to

transform to a coordinate system in which constant increments in the transformed

plane correspond to small increments near the surface and larger ones as depth

increases in the physical coordinate. Also, the boundary condition

es = 0 at =-m (6-79)5

could be applied at a large but, finite value of . However, it is possible to find

a transformation that has the previous characteristic and also maps = -- to a

finite value. There are many possible transformations, the one selected is actually

* a restricted form of what is known as the "Euler" transformation

z .= const. (6-80)

The interval 9=0 - is transformed to Z=O-1. The inverse of the transformation

is
caZ

=(Ty (6-81)

Al so,
|dZ -I(Z-l)

dZ 2 (Z- I)-"'
2 - 1 (6-82)
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In order to transform the differential equations the following relations are needed:

_Z. _L

ag bz
(6-83)

= Z" - +Z' -

Using (6-83), the nonlinear equation (5-23), and linear equation (5-43), become

Nonlinear: _+ _Rz ' (6-84)

Linear: + (z' - Z") e _ Z,2 -(R-l)e (6-85)a "~ ~ b TZ -=-Z -~ (-5

The transformed boundary conditions are

S8=0 at Z = 1 (6-86)

and, be 1 6_0-Z -T _(6-87)

where - is given by (5-25) and (5-50) for the nonlinear and linear models, re-

spectively. The steady state solution, (5-31), may be written as

= e = exp ["Z-1 (6-88)

Finite Difference Solution

Equations (6-84) and (6-85), subject to the boundary conditions (6-86)

and (6-87), and the initial cordition (6-88) are solved using the Crank-Nicolson

finite difference scheme. A network of mesh points is created as shown in Figure

6-10.

With the Crank-Nicolson method the derivatives and coefficients in the

differential equation are evaluated at the midpoint m+l/2, n+1/2. The resulting

17
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n+ 1

At
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"%,..

Figure 6-10. Finite Difference Mesh

solutions are accurate to second order. For nonlinear problems the difference equa-

tions are normally linearized, enabling a solution to be achieved by solving a coupl-

ed set of linear, rather than nonlinear, algebraic equations. In such cases, one
iteration must be performed to regain second order accuracy. The following repre-

sentations of the derivatives are used:

68 (S1/2Lmn+l m n-1) (em+ln+l- Om+1,n- )  (6-84)
2AZ 2AZ

_ [!m,n+1- 2 m , +n n-l)

=1/2 A ZO nm +
(6-90)

(@m+ln+l 20 m+ln+ m+l, n-I ) ]

_ =m+l,n- 8m,n (6-91)
At

From this point on only the equations for the nonlinear solution are presented, the
linear equation follow from similar considerations. After replacing all of the deri-

vatives in (6-84) by their central difference analogs, (6-89) to (6-91), the follow-

ing set of difference equations is obtained
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m+l-n- m.n + z... -")i

+' (Rm1/ n z (0Z + e m+l n+l- 9 m+l,n-I )

m n

m,n m ',+ +,-

dZ
2  (6-92)ii n

Tzd (ZZ + 6 m+l,n+l- 2 m+l n + 8 )m + l ,n
1  0

m,n m~-

n = 2,3,...N-1 1= surface

N= backwall

where:

z  a m,n+ 1 - em,n-1m, n

(6-93)

0~ =-26 +69mZZn m,n+l - , ,n  m,n-I

after collecting terms (6-92) can be written in the condensed form

A 6m+ 1  + Bn em+1  + C 6m+ 1  = D n2...N-1 (6-94)n ~,n-I m,n n m,n+ln " 6-4

where

A -(b +e) B =l+2e Cn =b-e

D n= om,6n- bn ez + e (6-95)nn At e nnZZ

-"' b = (R Z' -Z AZnM.'1/2 n n n 2An V

Once the boundary conditions have been applied, (6-94) yields a set of N-2, tri-

diagonal, linear algebraic equations, which may be efficiently solved using a sim-

ple Gaussian elimination algorithm. To reduce equations (6-94) to tridiagonal form

the boundary conditions at Z=0 and Z=l must be used to evaluate the terms

A2 em+l 1 and CN1 e+lN (6-96)
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lle backwall boundary condition (6-86) gives 0r +l,N=0. The surface boundary

condition is nonlinear and may be treated in numerous ways. The method currently

being used iteratively selects values for 8re+ 1 1 until the derivative at the surface

given by (6-87) is equal to the calculated derivative, to within a specified tolerance.
The calculated surface derivative is evaluated using a four point formula

m+l 18m+l, 2- 9m+l,3 m+l (6-97)
f IZ=0 6AZ

The solution to the set of equations, (6-94), provides values for the

*." nondimensional temperature, 9, at each mesh point. The temperature at the sur-

face, 6s-- l , together with the local pressure, determine the burning rate through

(5-30). The transient flame temperature is then obtained from (5-37).

The solution procedure, as given, assumes that the local pressure at

the burning surface is known. In reality, however, the local pressure depends

on the burning rate. In order to avoid a simultaneous, iterative, solution of the

combined flow and burning rate equations, the equations of motion are solved

using burning rate values obtained by linear extrapolation from previously calcu-

lated values. The pressure can then be assumed to be known, as required by the

above analysis. This procedure for uncoupling the burning rate calculation from

the fluid mechanics appears to work satisfactorily.

Burning Rate Interpolation

As discussed in Section 5, transient burning rate solutions are not ob-

tained at each mesh point. Instead, within each burning region, burn rate solu-

tions are calculated only at every n th mesh point. The burning rates at interme-
".1

diate mesh points are found by interpolation. This procedure was instituted in
order to economize on the amount of computer time devoted to solving the heat con-

'4 duction equation. If burning rate solutions were obtained at each x location, every

time step, the total computation time for these solutions would be more than ten
times that required to solve the equations of motion. By using high order methods

"" the error made in the interpolation procedure can be kept within quite reasonable

bounds.

.& -e
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The wavformn of the burning rate in the chamber tends to be smooth and

harmonic, since the burning surface does not respond instantaneously to disturbances.

The burning rate response to the fundamental pressure mode generates axial burn-

ing rate waveforms which typically vary as cos(wx). In order to obtain quantita-
tive estimates of the error introduced by the interpolation procedure a short study
was carried out. Three different interpolation methods were investigated:

I. Linear interpolation

2. Five point overlapping parabolic interpolation

3. Overlapping spline fit coupled with cubic interpolation

For equally spaced points method (1) is first order, method (2) third order and method

(3) fourth order. The results of a comparison of the three methods applied to the

curve y=. lcos(iTx) are briefly summarized in the following table.

Number of points at which function was specified

Method 26 13 7

Approximate Average Relative Error in %

Linear .2 .75 3.0
-4

Aver. Parab. 6x10 .015 .3
-S .2

Spline-Cubic 6xl1 .002

The exact value of the function was specified at either 26, 13, or 7 points. Each
method was then used to find the value of the function at 51 equally spaced points.

The relative percentage error at each point was then computed. The average errors

shown in the table are approximate, but are adequate for qualitative purposes. It
is evident from the table that the higher order methods as expected, are consider-

ably more accurate than linear interpolation. It is also evident that when high

order methods are used the spacing between burning rate solutions can be relative-
ly large. The results indicate that if burning rate solutions are obtained at every
seventh mesh point, the resulting interpolation need not generate errors of more

than a few tenths of a percent. The accuracy of the finite difference solutions to
the equations of motion and heat conduction equation, with the normal range of

step sizes, is typically of the same order. Thus, the interpolation procedure ccn
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,!* .:e the computation time for the burning rate solutions by a factor of five, or

more, without significantly affecting the overall accuracy of the total instability

solution. The second method, 5 point averaged parabolic interpolation, is the

one currently utilized.
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NOMENCLATURE

A - cross section area, or transient burning rate parameter

A - area at nozzle entrancee

A - throat area
- gas only, sound speed

t  - sound speed based on Pf and Tf

B - transient burning rate parameter, Eq. (5-49)

B - constant in Arrhenius pyrolysis law, Eq. (5-16)

c - ratio of particle to gas specific heats, cm/cm p
c - constant in steady state burn rate, Eq. (2-14)

Cd - particle drag coefficient

ck - erosive burning constant, Eq. (2-14)

c - specific heat of metal oxide

c - specific heat of gas at constant pressure
p

- specific heat of solid propellants

D. - diameter of the i th particle group

D - port diameterP
E - normalized surface activation energy, E /R T

also used differently in Eq. (3-19) s 0 5

E - activation energy of surface reactions

F - conserved quantities, Eq. (6-3)

- particle-gas interaction force per unit volume,
Pi for the ith particle group, Eq. (2-18)

C - conserved quantities, Eq. k'-4)

II - nondimensinal surface heat release parameter, Eq. (5-28)

Athf - heat of formation at OK
0

h enthalpy

- fractional li (cnstant

k thermal conductivity

1 - referenc , length

- perimeter of the qrain

M rrah numher

Ni - macih :mnltrr of ",quivalent" perfect gas

I P7
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M - mach number at nozzle entrance
e

m - mass flux from burning surface

m - mass flux from uninhibited end burning facese

N - number of particle groups

Nu - Nusselt number

n - pressure exponent in steady state burn rate law

n - exponent of pressure dependence of surface reaction rate,
Eq. (5-16)

P - pressure

P - nondimensional pressure, Eq. (5-22)

Pf - chamber pressure

Pref - reference pressure in steady state burn rate law

Pr - Prandtl number

Qf - heat release, per unit mass, in flame

Q P - particle gas heat transfer rate per unit volume, for
the i th particle group

Q - net heat of reaction for processes at burning surface,
Eq. (5-5)

Q S - surface heat of reaction at Ts, Eq. (5-6)

R - gas constant

R - universal gas constant

Re. - Reynolds number for the i th particle group, based on
particle diameter, and particle gas relative velocity

RHS - right hand side of characteristic compatibility relations

r - linear burn rate

Sb - total area of burning surface

S - equal to + 1

T - temperature

Tf - flame temperature of the propellant

T - reference temperature in viscosity law0

T - temperature at the propellant surface

T - backwall temperature of the propellant

t - time

III
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- nondimensional time, Eq. (5-22)

u - velocity

u - velocity of the combustion products as they enter the main flow

u S - axial component of u

'.; - gas reaction rate times gas density

- axial distance

- location of head end
- axial location at which initial perturbation terminates

P
- transformed depth coordinate in heat transfer solution,

Eq. (6-80), also terms in conservative equations, Eq. (6-5)
- growth constant, also used as a constant in coordinate

transformation, Eq. (6-80)

- particle damping constantp
- total particle to gas weight flow ratio, C 0,

i - particle to gas weight flow ratio of i th particle group

- gas only isentropic exponent

- isentropic exponent for "equivalent" perfect gas, Eq. (3-17)

- angle with respect to axial direction, or nondimensional
temperature, Eq. (5-22)

X - thermal diffusivity.

- defined by Eq. (5-48)

- viscosity

- nondimensional depth coordinate, rx/X

p - density

r - characteristic relaxation time for particle velocity, Eq. (6-21)
V

TT - characteristic relaxation time for particle temperature, (Eq. 6-22)

a - nondimensional frequency, wx/r -

- mass burning rate, per unit length, per unit cross sectional area

. - power in viscosity vs temperature law

I,
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Subscripts

f - flame

g - gas

Pi - i th particle group

s - at the burning surface

t - at the nozzle throat

Superscripts

- denotes a dimensional variable

( )' - denotes a small perturbation
(- - denotes steady state value, except in Sections 3 and 4

where used to denote equivalent gas value
( )+ - right running characteristic
( )- - left running characteristic

)(r) _ real part of

1.°0

V.°

°-

=°°
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APPENDIX 2

The one-dimensional, Eulerian form of the equations of gas dynamics for an

inviscid, non-heat conducting fluid in cartesian coordinates may be written in the

following conservative vectorized form:

" U + F(U) = 0,

U =(m and F(U) =(m2/p) +p
e L(m/P) (e + 0)

where e, the energy per unit volume is e = pE + pu2 ,

and E, the internal energy per unit mass, is E =

(Y-i)p

Equation (I) is solved using the Lax-Wendroff + Hybrid + Artificial Compression

Combination Scheme. The first step in he solution is the application of the standard

Lax-Wendroff predictor.

(n+ U'+l + - x Fn)) (2)

The corrector step is the standard Lax-Wendroff operator hybridized with a first

order scheme, as follows;

r1n+l =U n  Ft(nO n+-. + 1 e n n n n n (3)--i~ --- - --iV+4 - F--) + 8 ei-(--i+l - u i ) - 0i_ (-u- - i l

1~ -111+ 2 ~ 8 L1+l11+l -- U 1 - 11)

The last term in equation (3) is the correction term that reduces the second order

Lax-Wendroff schene to first order in the neighborhood of admissible discontinuities.
The switch, -J, was chosen here to be based on density gradients and is defined by;

-n max(F (4)i ia i, -i i+1
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I AI i-p 
IA i_ 1 0

JA i-441 I+i + IA. 0

0r otherwise

'114I 1' 'if r---

,>i+ 2  i+l i

[he concept of artificial compression is then utilized to restore the high frequency

content that has been diminished by the first order accurate Hybrid scheme. The

difference representation giof the artificial compression flux g, is &= aA. ,

where A u
-i -!i+1 i-

[in (i 6_sgn (6 ))

a.n= max ,min L4-I,11 1 (5)

k [k k

where k refers to the kth component of the _ (i.e., p, m or e) 6 = U(k)-(k)

Let S.+. represent the vector whose kth 'component is sgn(k 4 ) Then

the difference scheme which applies the ACM to the given solution -n+1 is:

n+1 -n+1 At
2Ax (+i -

A (I-i+l - IilSi+' 1 -1z, - -i-iL i-j ) (6)

-n+1 At n n
-- (C G. n

w he re c n  n n n

Since the Artificial Compression method must not be used in smooth regions, the

switch value is used again to limit the operation of the ACM corrector to the areas

of ndmissible discontinuities only. Thus, the final stage in the computation is:

11+1 ~n+l At n n n n (7)
U. U. 0 G G
-1 -' 2Ax -- P 4-2 1 i- -
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PART 2:

",PPLICATION OF THE DEVELOPED NONLINEAR INSTABILITY ANALYSIS TO THE

STUI)Y OF PULSE TRIGGERED INSTABILITY IN SOLID ROCKET MOTORS
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CHAPTER I

INTRODUCTION

,.11inear axial mode instabilities in solid propellant rocket motors can be

t(t, by randoin finite amplitude events such as the expulsion of an igniter or

I,]tIoi fraginent through the nozzle. Such instabilities are usually characterized by

.,. amplitude oscillations having steep-fronted, shock-like waveforms and are often

)!npanied by significant increases in mean chamber pressure. When instability is

tinted in this manner in a motor that is otherwise linearly stable (i.e., stable to

-t :itsimal disturbances), it is said to be a "triggered" instability. The existence of

,jered instabilities is a direct result of the amplitude dependence of the acoustic

r qy qjain or loss mechanisms in a solid rocket motor, e.g., pressure and velocity

,pled driving, nozzle and particle damping, acoustic mean flow interactions, etc.

i, n 1)litude dependence also accounts for the formation of limit cycles in which the

I ;(jins and losses are balanced. Triggering of instabilities in solid rocket motors by

-lurcil finite amplitude pulses suggests that artificial laboratory pulsers can be used to

V .. tiq(j0 this phenomenon.

fo hel l) assure the stability of production tactical motors, the Air Force has,

S.~-1,)r-. recently been requiring that contractors pulse prototype motors during

:,/oloI),nent. If done properly, the pulse testing of solid rocket motors should virtually

l;r~in'l_( the unexpected occurrence of instability in solid rocket motors. However,

' ,se of pulses that are too strong, or pulses that do not simulate natural pulsing

)'rionena, could easily result in the unjustified expenditure of resources to solve a

,,lein that, in reality, did not exist. Alternatively, tests utilizing pulses that are

1,,mIv,.rtently too weak might he no better than not testing at all. Thus, there is a need
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for rational pulsing guidelines directly related to the natural self-pulsing characteristics

of solid rocket motors.

The concept of evaluating motor stability by pulsing has been utilized in the past

to test both liquid I and solid propellant rocket motors. 2- 6 It has been demonstrated

many times that a given linearly stable motor design can be pulsed into instability.

However, the physical mechanisms responsible for the pulse initiation of nonlinear

instability are not yet fully understood. The influence of all of the pulse characteristics

(amplitude and frequency content of the pressure and velocity waveforms) on triggering

is also not completely understood at this time. The importance of properly describing

the pressure and the velocity waveforms of the pulse were demonstrated theoretically

in Chapter 3 of Part I, wherein dramatically different motor responses were obtained

for standing and traveling pulse type disturbances. Therefore, a complete study of

pulsing phenomena must include not only the characterization of the waveforms induced

by both natural pulses and pulse generating devices, but also an investigation of the

response of the motor to various types of pulses. With this information, it should be

possible to design pulse units that will simulate the triggering potential of natural

pulsing mechanisms such as ejection of inert materials through the nozzle.

A previous investigation of pulsing criteria for solid rocket motors 6 yielded n

semi-empirical model that was limited to predicting the maximum initial pressure

amplitude of the pulse. No attempt was made to predict the pulse waveform and pulse

velocity or to couple this model with a stability analysis of the motor itself. This

investigation is the first attempt to predict, a priori, all of the pulse characteristics

generated by several types of laboratory pulser units. Moreover, this investigation is

the first attempt to combine the pulser performance models with a nonlinear combus-

tion instability analysis of the motor.
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The developmnent of ballistic models for three different pulsers (pyrotechnic,

pi.NIon, (nd reduced brisance) was the first step in the overall model development 7 .

Njllistic analysis of the pulser designs provides the mass and energy fluxes that are

injetod into the motor. A nonlinear combustion instability program 8 (described in

Appendix I of Part I of this report) that solves the partial differential equations that

,1overn lhe! associated flow and combustion in solid propellant rocket motors was then

modified to model the effect of fore-end pulsing based on the mass and energy flux data

* lprovided by the pulser ballistic analysis. Combining these models allows a priori

predictions of both the injected pulse and the combustion response to this pulse to be

1),_prformed.

In order to examine the validity of the pulse prediction models, experiments were

,r1l-ted in which closed tubes filled with cold nitrogen and helium and motors filled

,/ilih hot combustion products were pulsed by the three different pulsers. Predicted and

-riqntqured pulse amplitudes and waveforms were then compared. The pulser perfor-

mi'nnce models, the modifications made to couple these models to the chamber analysis,

,nd a comporison of predicted and experimentally measured pulse vaveforms are

reported in Chapter 2.

The ability of the overall pulser and nonlinear stability model to quantitalively

)rodict actual pulse-triggered solid rocket motor instability data for both laboratory

]Imd full-scale rocket motors is evaluated in Chapter 3. The ability of the present

,nl/,i,, Io a priori predict the nonlinear stability of motors is inhibited by deficiencies

in (,xisling presure and velocity coupling combustion response models (as described in

pr 5 of Part I). Modeling deficiencies are further exacerbated by the lack of

,if ir(ilt rneasured values for key propellant parameters such as surface temperature,

it tivtion e-nergy and net heat release rate of the surface decomposition reaction,

SIrrnal diffusivity etc. Moreover, as pointed out previously 9 , existing velocity

1 q9



coupling models, including the present ad hoc model, (re not based on an understanding

of the fundamental physical mechanisms. Given the present state of combustion

-' response modeling, the key issues to be addressed in this investigation were: the ability

of the overall model to predict the relative nonlinear stability of motor/propellant

conbinations as a function of grain geometry, operating conditions, and pulse arnpli-

- tudes (for a fixed propellant formulation); and the ability of the model to predict all of

the nonlinear characteristics observed in motor firing data. The first issue was

addressed by comparing predictions and ineasured data for a series of laboratory scale

motor firings. The second issue was addressed by comparing predictions and data for

both Laboratory and full scale motor firings. Comparisons of theoretical predictions

with experimental data for a series of laboratory scale tests and for two full scale

" motor tests are presented in Chapter 3.

The pyrotechnic, piston and reduced brisance pulsers that were mentioned

"" previously have been designed to facilitate laboratory investigations of nonlinear

instability and they all share the common feature of inducing disturbances by

dschcrging gaseous combustion products (at a controlled rate) into the notor

combustion chamber. However, the point of discharge is usually the fore-end of the

" ,ot))I , i ,; ~),,, ed to tie aft-end point of origination for natorally induced nozzle ejecta

.)jlses. Thus, a second study designed to si,nulate naturally induced nozzle ejecta pulses

was conducted.

The pro's-t t ejecta pulsing study, described in Chapter 4, involves both experi-

nerits and the developnent of models designed to simulate ejection of conbustion

•. chamber material through the nozzle. Pulse tests were conducted in which spheres of

different densities and sizes were ejected at the head end. The test data was used to

identify the characteristics of oscillations resulting fron nozzle ejecta and their

2 C,

..............- * * .*V * * ., * * .* * * * * * * - * .*.*.



-rnijahilily to initiate sustained pressure oscillation in a solid rocket combustion

cJonoihr. The lest dala was also used to examine the validity of the concurrently

developed models.

The modeling work consisted of several parts. First, a simplified model was

developed to calculate the motion of an ejecta through the nozzlelO. Two methods for

predicting the resulting pulse amplitude were then developed. A semi-empirical

method (based on a linearized analysis) that predicts the amplitude of ejecta induced

pulses at the nozzle entrance, was developed. The second approach utilized the existing

nonlinear combustion instability model described in Part I of this report, modified to

accept a time dependent Mach number boundary condition at the nozzle entrance, as

delermined from the calculated throat constriction lime history. Comparisons of

predictions obtained utilizing the first model and the measured initial pulse amplitudes

(ire presented in Chapler 3. Finally, it is shown that the modified nonlinear instobility

- ln)lysis is capable of accurately predicting the initial pulse amplitude and the rnolor

response to pulsing, as observed in waveform evolution, growth rate and mean chamber

l)ressuire.
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CHAPTER 2

MODELING AND COLD FLOW TESTING

PULSEtR PERFORMANCE MODELS

Three different types of laboratory pulsers were employed in the present study:

the pyro, piston. and low brisance pulsers. Only a brief overview of their design and

operation is given here. Furlher details are given in Ref. 7.

Pyrotechnic Pulser

A schematic of the pyro pulser is shown in Fig. I. A squib initiator ignites a

pyrotechnic charge (Red Dot double base powder) in the combustion chamber. The

gaseous combustion products increase the pressure in the chamber to the fupture

pressure of the burst diaphragm. As the diaphragm bursts, the combustion products plus

a fraction of the remaining unburned pyrotechnic charge expand into the pulser barrel

and are then vented into the chamber. A typical pressure history obtained with the

pyro pulser is shown in Fig. 2. With this pulser the mass and energy flux rates reach a

maximum value In a fraction of a millisecond after the diaphragm bursts and then decay

. in an approximately exponential manner as the combustion products are vented into the

chamber. The pulser is typically designed to provide a vent time of approximately 20%

of the period of the fundamento acoustic mode of the chamber. By varying the design

of the pulser, it is possible to control the venting time. The main features of the pulse

produced by this pyro pulser are a very fast rise in the pressure and mass flow rate up

to a predetermined maximum value followed by an exponential decay with a

controllable decay rate.

. F ? .7 -e_ '.odc_ e



Test Adapter Pyro Pulser Houising

Motor Adapter -hPyrotechnic Charge

Holex 1196 Squib

Orifce PatePressure Transducer
Orifce PatePolyurethane Foam Restrainer

Burst Diaphragm Volume Spacer

Fig. 7. Schematic of the pyro pulser unit.
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.Burst Disk
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~Actual.

Exponential -..
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a~138

0 0.42 0.84 1.26 1.68 2.10 2.52 2.92

TIME, MIL. SECONDS
Fig. 2. Pyro pulser pressure-time function.
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Performance analysis of the pyro pulser is posed as a simple lumped volume

venting problem, neglecting dynamic effects. The analysis is based on the solution of

the bulk mass and energy balances as applied to the pulser combustion chamber. Since

the pressure ratio across the vent is very high, the vent can be assumed to be choked

dirinn mnst of the injection period. The pulser model also assumes that the back

pressure (chamber pressure) does not increase significantly. Thus, it is possible to

uncouple the pulser ballistics from the chamber flowfield solution, even for the short

time at the end of the injection during which the vent is not choked.

The conservation equations to be solved are 7:

Mass dm = - (I)

dc Tm
dt v o

Energy dvll CTo-CT (2)

The mass flow rate through the vent is:

MO C BCdCAp/(T/T) 1 1 2  (3)

Where Y
Cs-IK(Pc/p) 1/y [ i - (pc/p)' "-11/2 y-1 4K ~ P P / , Pc/P > ( 2 (4)

1/2 Y+1 (5)

and (()))W

1/2 (6)

The coefficient Cs provides the inass flow reduction due to subsonic flow, while

C w is the sonic flow coefficient. Using the equation of state for a perfect gas, the

mass and energy balances can be manipulated to form the following set of ordinary

differential equations:
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dT = [fC(I-T/To ) - (y-I)(T/T )1/2 CO Ap]T/(pv/F) (7)

- (fC--Y(T/T )I/2 C' ApJ(F/v) (8)
dt 0 w

Where

C' -C C C(9W sd w

Solution of this set of equations with initial conditions (pressure, temperature, and

fraction of charge consumed evaluated at the time the burst disc fails) yields the output

nass flux mo and energy flow rate roCpT. These values are utilized as fore-end

boundary conditions for the chamber flow model.

Low Brisance Pulser

When pulsing solid propellant rocket motors for qualification purposes, simulation

of natural motor pulsing phenomena is desirable. For this purpose, a pulser with longer

rise and decay times that simulates ejection of inert material through the nozzle is

desirable. Pulses with similar characteristics can be produced with ejecta pulsers6 that

eject inert plugs into the motor. Nevertheless, since it is not always possible to use

ejecta pulsers with real motors, an alternative device called the low brisance pulser was

developed. This device utilizes a variable vent area to increase the rise time of the

pulse. A schematic of the low brisance pulser is shown in Fig. 3. Upon firing of the

pyrotechnic charge and burst of the rupture disc, the pressure generated by the

expandin combustion products acts on the piston base. The piston is driven back and

the vent begins to open. As the piston traverses the vent opening, the mass flux into

the motor increases exponentially from zero to a maximum value and then decays back

to tero. A typical performance curve for the low brisance pulser is shown in Fig. 4.

Hoth the ,nass injection rate and its rise time can be controlled by varying the

2nr)
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Fig. 3. Schematic of the low brisance unit.

.r.

Pressure

> Vent Area

0

1:

Time

* Fig. 4. Low brisance pressure-time function.
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jilraineters which affect the piston velocity. Calculation of the inoss and efiergy flow

rates for this pulser design is based upon the bulk balance of mass and energy in the

chamber and a force balance on the piston. Mass and energy conservation equations are

given, respectively, as:

dm = ._ (10)

dc vT re . c T .in-c pT tho -pA U (Ju 1)
dt

The ,nass and energy flow rates into the breech, rhi and rincpTi, are equal to the

corresponding flow rates out of the charge holder. The ballistic performance of the

charge holder is identical to that of the pyro pulser. The ,nass and energy flow rntes

"" oijt of the pulser (into the motor port), i o and rocplT, depend on the amount of vent

irea exposed by the moving piston. The equation describing the mass flow rate through

the vent is similar to the one obtained with the pyro pulser, but with an added

multiplying factor, fv which represents the fraction of the vent area uncovered by the

noving piston.

Tit = C C C Ap/(T/To) 1/2 (12)
0 v s d w 0

Let Xv be the distance the piston must travel before the edge of the vent is reached, x

, the distance traveled, and dv the vent diameter. Then,
IL b_ , X < X v

. (13)
f" - 1/2+(illN)(y f7+tan- I(yl 1-)) ,o<x-xv<d

1, x-x>d,

Where y =((x-xv)/rv)- I. (14)
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Manipulation of the mass and energy balances results in the following set of

ordinary differential equations having pressure and temperature as dependent variables:
"

(v +A X):Thi yRT.&i. -YRM -'pA uo *p dt - o- P (IS)

SdT -(((mr./T)-)RT6.-(Y-)RTi -
T dt L 0 (16)

(y-I)pA Pu)/(p(v + x)) (( tpp o p

Piston Pulser

In order to allow for even more variation in the range of pulse characteristics

available for motor test and research purposes, another type of pulser called the piston

pulser was designed. A schematic of the piston pulser is shown in Fig. S. After rupture

of the burst diaphragm, the combustion gases and the unburned fraction of the charge

enter the breech volume, As the pressure increases, the piston accelerates into the

bore volume. The gases in the bore are compressed by the piston and are vented into

the motor. An idealized performance curve for the piston pulser is shown in Fig. 6. In

reality, the pressure decay from the maximum amplitude to chamber pressure is not a

discontinuous jump, but rather a rapid decoy. The reason being that when the piston

stops, the venting of the gases left in the vent volume takes a finite amount of time.

With the piston pulser the mass and energy flow rates increase exponentially with time

and decay rapidly. This is in contrast to the exponential decay only that is observed

with the pyro pulser, and the significantly (typically) slower rise and decay periods

observed with the reduced brisance pulser. The piston pulser rise time and mass flow

rate can be controlled by varying the breech charge or volume, the piston weight or

stroke and the vent area. Since the volume of the piston pulser is in practice limited,

[-



* * - -. .*, *** .y ~ S~b - *.- -

Pressure Transducer

Space #fO" Ring Seals

-Teflon Stopper
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Fig. 5. Schematic of the piston pulser unit.

-Breech Pressure

Stroke Completed
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Time

Fig. 6. Piston pulser pressure-time function.
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the amount of moss that can be injected into a motor is relatively small. Thus, in order

to produce relatively high amplitude pulses, the piston pulser must be designed with

very short rise and decay times. This produces a very brisant blip-like pulse.

Mass and energy injection rates are evaluated from conservation of mass and energy

and a force balance on the piston. Since mass is not expelled, the breech mass balance

is trivial. Conservation of the energy in the breech is written as follows:

dc Tm (17)
v c CvTo b - PApudt P

Conservation of nass and energy in the bore are written, correspondingly, as:

dm
t (18)

dc Tm A - T

dP P (19)

Finally. a force balance on the piston yields

du (20)
d A(p-pb)

The initial pressure in the breech is the rupture pressure of the burst disc. Initial

conditions in the bore are identical to the initial conditions in the chamber.

CHAMBER MODEL

As mentioned previously in the Introduction, a priori prediction of pulse charac-

teristics and the combustion response to this pulse requires coupling of the pulser

performance model to a chamber flowfield and combustion model. In order to achieve

this coupling, an existing nonlinear combustion instability model that solves the partial

differential equations that govern two-phase flow in variable cross-sectional orea solid

11
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propellant rocket motors (described in Part I of this report) was modified to accept the

pulser mass and energy flow roles as boundary condi ions.

The flow field created by injection of pulser gases into a motor resembles an

under-expanded plume until such time when the gases (or the pressure waves created by

*] injection) reach the walls of the chamber. The flow field is two-dimensional, and strong

inixing will take place within a few orifice diameters downstream of the pulser exit.

Rather than attempt to model this complex problem, the present work sought to

determine if, by the use of judicious engineering approximations, a simple one-

dimensional model of the problem could yield reasonably accurate and useful results.

When developing a one-dimensional model for the solution of this problem, one has

to resolve the problem of specifying the boundary conditions at the fore-end and the

problem of mixing between the pulser and chamber gases. Since the flow out of the

pulser is supersonic (during most of the pulsing period with the pyro and low brisance

lpul-ers and during the interval when most of the mass is expelled from the piston

pulser), the flow variables at the pulser exit are completely dependent upon conditions

inside the pulser. Nevertheless, most of the fore-end is a hard wall at which the gas

axial velocity is zero. This head end velocity discontinuity cannot be treated properly

wilh a one-dimensional model, so additional approximations had to be made. Since the

pulser orifice is usually very small relative to the chamber diameter, and since the

velocity difference between the injected pulser gases and the chamber gases is large,

mixing should rapidly reduce the velocity of the gases to a subsonic level. Based on

these considerations, the following simplified model was developed. During the pulsing

period the pilser mass and energy flow rates, as predicted by the pulser performance

models, 'ire specified as boundary conditions. When the pulser flow stops, the boundary

Irc(irrneril reverts back to the normal treatment for a hard wall. Mixing per se was not
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modeled, but its presence was implicitly accounted for by assurning that the pulser

.,i., !',corne subsonic in the process of instantaneously expanding t) fill the head end

')f 11 ,Vw , nber.

The equations representing this model are as follows:

Continuity Ml : l U1 Al (?I)

2

Energy Ei = mI (CpT + 1/2 ul) (22)

State P1 : I RTI (23)

Characteristic P1 : P1  + K al (Ul - Ul ) (24)
Re I a ti or,1(4

COVPAMSON OF EXP'-i-l,,,AFiITAL A.1l ) A.NAJYTICAL [,ESULTS

The experimental results presented in Figs. 7, 8, l0a, II, and 13a were obtained

by pulsing a closed cylindrical chanber having a length of 1.22 meters (48 inches) and

an internal diameter of 0.077 meter (3.056 inches). The chamber was filled with

nitrogen at roon temperature pressurized to 0.689 MPa (100 psi) chanber pressure. By

utilizing cha nb-r3 filled with inert gases the characteristics of the different pulses and

the resulting waveforms in the chamber cjo be better analyzed and understood since

te co.nl)',,< i .terirtions between the plser induced vOVCS OilJ th~e prpelInt

coinbustion are eliminated. In addition, by conducting experiments with an empty

chamber, it is possible to obtain data at several axial locations. This results in a nore

complete description of the propagating wave which, in turn, enables better

understanding of wave propagation, wave steepening, and viscous losses. In this series

of tests, the chamnber was instru nented with six high frequency pressure trnnsdumjers
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i. tt'< on the sidewalls at 3, 6, 12, and 24 inches from the pulsed end and on both end

i,,sitres. The ptflser units were attached at the fore-end of the chamber.

Performance analyses of the pyro, low brisance, and piston pulsers yielded the

tepnperature and mass flow rate curves that are shown in Figs. 7a through 7c,

r,.pectively. The data shown in these curves indicates that the pulser units performed

:r.: expected. The time evolution of the pressure osciliations (where time is nondimen-

\:onalized by multiplying dimensional time by the sound speed divided by the chamber

b, ntJth) initiated in the chamber by the pyro, low brisance, and piston pulsers are shown

11n Figs. 8, 1Oa, and II, respectively. The very short rise and decay periods of the pulse

initiated by the low brisance pulser (shown in Fig. lOa) is a result of the low back

iresstire (in the chamber) acting on the piston surface. Thus, in this case, the pulse and

the resulting wave in the chamber are very similar to those generated by the pyro

p lster. The wave is already fully shocked after propagating only three inches into the

chamber. The pressure oscillations excited by the piston pulser (Fig. I I) feature a very

fust rise and decay (similar to the pulse pressure and mass flux variation). The total

mnss injected by the piston pulser is small compared to the total mass in the chamber

*(i hout 0.39,). The relatively large amplitude of the resulting pressure oscillations in the

(hob(Irrer is due to the fact that most of the mass in the piston bore is injected into the

tii nber in a very short time.

I ime evolution of pressure oscillations in the chamber, obtained by utilizing the

I redicted tnnss and energy flow rates as boundary conditions for the nonlinear

r-.rmmhmstion instability progromn, are shown in Figs. 9, 10b, and 12 for the pyro, lo\.'

r vnnre(, and piston pilsers, respectively. Very good agreement between the measured

'm1vi predicted waveforins (amplitude and shape) is demonstrated. Table I shows a

* Omiporison of the measured and predicted maximun pressure anplitude values ct the
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Fig. 7a. Pyro pulser calculated performance.
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several locations along the chamber generated by the pyro pulser.

217



aft-end for the first four wave periods. Excellent agreeinent is demonstrated. The fact

that a simplified one-dimensional model could accurately predict the wave amplitude

shape and decay rate for the first 4-5 cycles was somewhat surprising, but also very

satisfying. The one-dimensional inviscid model does not account for viscous losses at

the walls of the chamber, thus, the predicted decay rates were not expected to match

the measured decay rates. The excellent agreement between the predicted and

measured decay rates for the first few cycles results fron the fact that the initially

high decay rates are primarily due to entropy increase resulting from repetitive shock

wave processing of the gas in the chamber. During this time interval, viscous wall

losses are a relatively insignificant part of the total losses. The capability of the

present model to predict entropy increase and waveform decay rates (for several test

cases) that are in excellent agreement with closed form analytical results has been

demonstrated in Part I of this report. Nevertheless, as expected, results obtained with

this inviscid model do not match the experimental decay rates at later times, when

viscous wall losses become the major loss mechanism.

A second series of cold flow tests was conducted using helium instead of nitrogen

under otherwise identical conditions. Again, excellent agreement was demonstrated

between the measured and predicted waveforms.

When hot gases are injected into n cold chamber (cold chambers pulsed by the

pyro and low 'risance pulsers), a large temperature gradient is formed near the fore-

end. This temperature gradient results in partial reflection of the shock returning from

the aft-end which, in turn, results in pressure waves that are not as steep-fronted as

those predicted at the aft-end. In addition, the development of a slight expansion in

front of the shock can also be observed (as shown in Fig. 13). These phenomena are

observed in both the measured and predicted data. In the experiment, convection,
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Table I. Comparison of measured and predicted maximum pressure amplitude values at
the aft-end.

Pyro Low Brisance Piston
Cycle measured predicted measured predicted measured predicted

1 112.0 118.2 75.2 88.48 20.4 15.16
2 59.9 64.7 48.0 47.68 12.5 12.51
3 46.8 47.62 36.0 36.36 9.6 11.47
4 38.9 39.38 27.5 29.78 7.6 10.8
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aFigs. lOa-b. Low brisance pulser; comparison between measured and
predicted pressure perturbations at the aft end.
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,-0nduction, and mixing rapidly reduce the temperature gradient. The current analysis

does not treat mixing or heat conduction, thus, convection is the only operative heat

transfer mechanism. Since convection is a slow process (due to the low velocity of the

(Jnses), the calculated temperature gradient remains unrealistically steep for a

relatively long period of time. This results in predicted maximum fore-end pressure

amplitudes that are lower than the measured data. The predicted results at the center

of the tube (Fig. 9c) show the marked difference between waves reflected from the

fore-end and waves reflected from the aft-end. This temperature gradient phenomenon

should not affect the predicted results when solid rocket motors are hot pulsed, since

both the injected pulser gases and the combustion products in the chamber are at

approximately the same temperature.

An additional point should be made concerning the performance analysis of the

piston pulser. The piston (driven into the bore by the high pressure in the breech

volume) is stopped by a Teflon stopper located at the aft-end of the bore volume. The

conpression of the Teflon stopper has to be accounted for since the pressure and mass

injection rates are rapidly increasing as the piston completes its stroke. Because the

remaining volume occupied by gases at that time is small, a relatively small error in

ostimnating the final compression distance of the Teflon stopper (referred to herein as

stand-off distance) can result in a relatively large error in the predicted maximum

,-. 'inplitude value of the wave initiated in the chamber.

The predictions presented for the piston pulser (Figs. 12a and 12b) were obtained

utilizing a stand off distance of 0.0375 inches. The predicted pressure results remain

lualitatively the same for different stand-off distances; nevertheless, there are

,upnntitntive changes. For instance, the maximum amplitude of the first incident wave
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Figs. hla-b. Piston pulser; time evolution of measured pressure
perturbations at two locations in the chamber.
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Figs. 12a-b. Piston pulser; time evolution of predicted pressure
perturbations at two locations in the chamber.
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Figs. 13a-b. Pyro pulser; comparison of measured and predicted pressure
perturbations at the aft end of the chamber.



at the aft-end is 8 psi with a stand-off distance of 0.10 inches, 10 psi with a stand-off

distance of 0.05 inches, and 15 psi with a stand-off distance of 0.0375 inches. Thus,

previous knowledge of the stand-off distance is needed for accurate prediction of the

pulse amplitude produced by the piston pulser.

Spatial evolution of pressure waves in the first half wave period, as initiated in

the chamber by the pyro and piston pulsers is shown in Figs. 14a and 14b,

respectively. The differences between these pulses are evident in the figures. The

very fast rise and decay times of the pulse generated by the piston pulser result in a

very narrow steep-fronted and steep-backed wave. The prediction of such waveforms in

a sharp-nonoscillatory manner is a formidable test of a numerical scheme. The ability

of the present numerical technique to reproduce these waves with only slight post-

expansion oscillations is another indication of the excellence of this shock capturing

technique for all types of wave propagation problems. Spectral analysis of the very

narrow wave predicted for the piston pulser (results at the fore-end are shown in Fig.

15) indicates a very high percentage of energy in the higher modes. This result is

significantly different from spectral analysis results obtained for an N-type waveform

(discussed in Part I) for which the energy contained in the higher modes falls as I/n 2

* Iwith respect to the energy contained in the fundamental mode (where n is the mode

number).

A second series of experiments was conducted utilizing a 1.22 meter (48 inch) long,

0.038 meter (.5 inch) internal diameter chamber filled with hot combustion products.

*A subsonic vent was utilized to maintain a constant pressure of 6.89 MPa (1000 psi).

"" The chamber was instrumented with six high frequency Kistler pressure transducers.

The transducer locations were the same as used in the cold flow experiments. The pyro,

- low 5risance, and piston pulsers were utilized to pulse the chamber at the head end.
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Figs. 14a-b. Spatial evolution of pressure waves in the chamber
initiated by the pyro and piston pulsers.
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The total mass discharged from each pulser was held constant, with a ratio of mass

injected to nass in the chamber of 0.005.

The characteristics of the resulting pressure waves in the chamber obtained with

the pyro and piston pulsers are, in general, similar to those obtained in the cold flow

series of tests. The low brisance pulser results were, however, significantly different.

In the cold flow tests, the back pressure acting on the piston was too low, resulting in a

rise time that was too short and a pulse shape very similar to that generated by the

pyro pulser. In the hot gas tests, the back pressure is high and a much slower rise time

was obtained. The resulting pressure wave in the chamber (shown in Fig. 16a) is

significantly different from the wave generated by the pyro pulser (Fig. 16b). The

wave generated by the pyro pulser is already fully shocked after propagating 3 inches

into the chamber. In contrast, the wave generated by the low brisance pulser is steep

Ihut never fully shocked and the transition to a sinusoidal type waveform is faster.

Although the total mass injected by the pulsers was identical, the pressure amplitudes

of the waves generated are a strong function of the mass injection rate; faster injection

yielding higher amplitudes. The maximum amplitude of the first reflected pressure

- wave at the fore-end generated by the piston pulser was III psi, compared to 52 psi for

the pyro pulser and 32 psi with the low brisance pulser.
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Fig. 15. Piston pulser; PSD as a function of frequency at the fore-end.
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Figs. 16a-b. Hot flow tests; comparison of measured pressure
perturbations in the chamber initiated by the low brisance and
pyro pulsers.
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CHAPTER 3

1I)1(F IONS AND EXPERIMENTS FOR LABORATORY AND FULL SCALE MOTORS

I_AHOtRA [ORY SCALE MOTORS

A series of experiments was conducted by Aerojet Tactical Systems Company

(under contract F04611-8i-C-0007 with AFRPL) in which several laboratory scale motors

with the same propellant and different grain geometries and nozzles were pulsed by

different pulsers at different operating pressures.

fhe test motors were 1.22 meters (48 inches) long and had an internal case

liameter of 5.71 centimeters (2.25 inches). Partial length grains were located at the

fore-end of the motor. The grains were partially recessed into the case. Thus, at some

Line towards the end of a firing a flush grain configuration was achieved. Prior to this

tlime, the grain represents an area constriction, and after this time, the grain is

recessed relative to the case diameter. Two types of pulsers were used in the tests to

be reported herein, i.e., pyrotechnic and piston pulsers 7 . Two pulser units were

(ittnched to the fore-end of the motor for each test.

J

Instrurnentntion

"he pressure oscillations in the motor were recorded at six axial locations using

'istler Model 703 piezoelectric pressure transducers. A single DC (Taber) transducer

-.S Used to record ,neon pressure. The transient pressures in the breech of the pulse

"1 its were nlso measured with piezoelectric transducers. Thermal shielding of the

pressure transducers was accomplished using vulcanized rubber (RTV). Based on shock

i,,be calibration tests, it was concluded that an RTV thickness of 0.317 cm (0.125 inch)

t.e Ids optimal resolution of the high frequency content of the steep-fronted
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shock waves, within the constraint of adequate insulation. With a 0.125 inch rTV

coating, the resonant frequency of the transducer is reduced from approximately 90

kHz to about 64 kHz with an amplitude accuracy within approximately 10 percent. At

this level, high frequency measurements can be obtained up to about 20 kHz.

Nevertheless, artificial oscillations at very high frequencies (termed transducer ringing)

that are observed in the transducer response immediately following the passage of a

shock wave, could not be completely eliminated. Therefore, the measured pulse

amplitudes reported herein were corrected for this effect, in an approximate manner,

whenever present.

Pulse Predictions

The ability of the combined pulser/chamber model to accurately predict the pulse

induced waveforms in closed chambers filled with cold inert gases, has been demon-

strated in Chapter 2. The validity of the pulser modeling under actual motor firing

conditions was examined in this study.

Test PCC3 utilized a grain length of 22.8 centimeters (9 inches) and an initial

internal grain diameter of 3.17 centimeters (I.25 inches). Two piston pulsers, each

having 0.7 grams of Red Dot powder, but having different stroke lengths, were used.

The pulse units were fired at motor burn times of 0.95 and 1.17 seconds, when the mean

pressures were 10.37 MPa ( 1503 psi) and 1 1.45 MPa (1660 psi), respectively. Figures 17a

and 17b compare the measured and predicted pulser breech pressure time histories for

the two pulses. Very good agreement was obtained for the primary pulse; however, the

analysis cannot predict the small secondary pressure variation that is produced in some

cases when the piston bounces off the lead stop instead of sticking to it.

i 3
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Figs. 17a-b. Comparison of measured and predicted piston pulser
breech pressures, test PCC3.
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Test PCC4 utilized a grain length of 20.32 cm (8 inches) and an internal grain

diameter of 3.17 cm (1.25 inches). In this test, two pyro pulsers having 0.165 grams of

Red Dot powder were fired 0.98 and 1.21 seconds into the motor firing, at chamber

pressures of 11.12 MPa (1612 psi) and 12.25 MPa (1776 psi), respectively. Figures 18a

and 18b show a comparison of the neasured and predicted breech pressure time

histories. Excellent agreement was obtained, demonstrating the ability of the pulser

performance model to predict the breech pressure, and consequently, the mass and

energy flux rates into the combustion chamber.

It will be shown in the next subsection that, when the mass and energy flux rates

calculated using the piston and pyro pulser performance models were used as boundary

conditions for the nonlinear stability analysis, excellent agreement between the

predicted and measured pulse amplitudes and waveforms was also obtained. These

results, as well as the results of additional comparisons not reported herein, demon-

strate the ability of the pulser/charnber model to accurately predict the pressure

perturbations produced by laboratory pulse units.

Stability Predictions

It was noted previously that several of the parameters that determine the

pressure coupled response versus frequency characteristics of the burning propellant are

unknown. To overcome this deficiency, this set of parameters and the magnitude of the

velocity coupled response were chosen to yield a best fit for pulse I of test PCC3. This

test was established as the baseline, and all of the other stability predictions (for the

same propellant) were carried out leaving these values unchanged. All of the paraneter

values utilized here were physically reasonable.
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Figs. 18a-b. Comparison of measured and predicted pyro pulser
breech measurement, test PCC4.
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The time evolution of the mean chamber pressure neasured during test PCC3 by a

Taber transducer located at the fore-end, is shown in Fig. 19. The notor was stable in

response to the first pulse and was driven unstable in response to the second pulse. The

measured fore-end pressure oscillations induced in the notor by the first pulse are

shown in Fig. 20a. The first piston pulser induced wave has an amplitude of .724 MPa

(105 psi, or 7 percent of the mean pressure). It should be noted that all initial pulse

amplit'udes are quoted at the fore-cnd of the notor for the first wave reflected fron

the aft-end. The initial shocked waveform rapidly decays to an alnost sinusoidal

waveform, indicating that the motor is stable to this pulse. The predicted tirme

evolution of pressure oscillations for this case, obtained by utilizing the predicted mass

and energy flow rites as boundary conditions for 1he nonlinear combustion instability

program, is shown in Fig. 20b. The set of parameters listed in Table 2 was utilized in

this "baseline" test. Excellent agreement is demonstrated between the measured and

predicted initial polse amplitude and waveform, the decay rate of the pulse, and the

temporal evolution of the waveforms decay rate and harmonic content of the waves.

The temporal evolution of the waveform, as observed in both the predicted and the

measured data, is of special interest. The generation of a second shock wave is

attributed to partial reflection from the area discontinu;ty at the end of the solid

propellant grain, a discontinuity that still exists at the time the first pulse is fired.

This reflected shock wave is initially amplified in time as the oriainal pulse decays,

until it dominates the waveform.

Since the gases injected fro n the piston pulser are al a significantly lower

temperature than the gases in the hot ,notor, a large temperature gradient is forned

near the fore-end, resulting in the formation of expansion waves behind the propogatinq

shock. This phenomenon is observed in both the measured and predicted data. In the

experiment, the nixing of the hot propellant products with the cold gases reduce:, the

2 34
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Fig. 19. Chamber pressure as a function of time, test PCC3.
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Figs. 20a-b. Comparison of measured and predicted pressure
perturbations at the fore end, test PCC3, first pulse.
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temperature gradient rapidly. The current analysis does not treat mixing, thus the.

calculated temperature gradient remains unrealistically sleep for a relatively lonqe-r

period of time (about 7 wave cycles in the predicted data as compared to aboul 4 in the

measured data). In contrast, when hot gases were injected into a cold chamber

(Chapter i), aiexpkinsinn is developed in front of, rather than behind the shock.

Th-ie rmeasujred fore-end pressure. oscillations for lest P(C3 pulse 2 are shown in

Fiq. 21a. In thi case, the piston p(lser produced a pulse having an ornplilude of aboil

0.43 MPa (63 psi, or 3.8, of the nman pressure). The predicted pressure history is

shown in Fig. 21b. The predicted pulse amplitude (3.8%) and waveform, as well as t,

lemporal evolution of the waves (shape, amplitude and growth rate) are all in excellent

agreement with the measured data. For instance, after 15 wave cycles, bolh the

measured and predicted waves have an amplitude of 5.2% of the mean pressure.

Without changing any of the parameters (Table 2) from those employed in predicting Ohw

first pulse, the analysis was able to correctly predict that the second pulse would

trigger a sustained nonlinear instability.

In the second motor firing considered (PCC4), pyro pulsers were employed instead

of piston pulsers, the grain was shortened to 20.32 cm (8 inches) and the nozzle

diameter .vas reduced. The mean pressure history for this lest is shown in Fig. 22. The

pulsers were fired at 0.98 and 1.21 seconds into the motor firing at mean pressures of

11.12 MPa (1612 psi) and 12.25 MPa (1776 psi), respectively. At these condilions, lhe

motor is marginally unstable - in a linear sense - at the second mode freqency. and low

level spontaneously initialed oscillnlions are observed throughout the firing. As in t(st

PCC3, the first pulse of test PCC4 failed to produce sustained nonlinear oscillations,

while the second pulse did trigger a nonlinear instability.
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Figs. 2la-b. Comparison of measured and predicted pressure
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Figures 23a and 24a show the measured time evolution of pressure oscillations at

the fore-end of the motor induced by the two pulses. The corresponding calculated

results are shown in Figs. ?3b and 24b. Despite the presence of the residual

spontaneous 2nd mode oscillations, which are unaccounted for in the analytical results,

the predicted and measured initial pulse amplitudes and waveforms, and the wave

growth rate (2nd puls.') and decay rate (Ist pulse) are all in very good agreement. The

a,nplitude of the first pulse was neasured to be 2.5 percent of the mean pressure, while

the predicted value was 2.6 percent. For the second pulse, the measured value was 2.3

percent and the predicted amplitude was 2.4 percent. Here again, the analysis was

successful in predicting the motor response to each of the pulses. After the first pulse,

both the data and predictions show that the pressure oscillations first increase for about

six wave cycles and then decay slowly. The amplitude of the second pulse was near the

limit cycle amplitude; hence, the pressure oscillations increase only slightly following

the pulse. In both cases, the measured and predicted wave amplitudes at the end of 15

wave cycles are in very good agreement.

The third and last set of data obtained in this series of tests, test PCC2, was also

conducted with a 20.32 cm (8 inch) long grain, but at significantly lower chamber

pressures. Two piston pulse units were fired during this test at chamber pressures of

8.84 MPa (1282 psi) and 10.21 MPa (1481 psi). The firsi pulse, with initial amplitude of

about 0.33 MPa (48 psi or 3.74 percent of the mean pressure), decayed rapidly into a

sinusoidal waveform. The results were qualitatively similar to those obtained in test

PCC3, but with a somewhat larger decay rate. The second pulse, with an amplitude of

0.4 MPa (58 psi or 3.9 Dercent of the mean pressure), increased initially in amplitude (to

about 4.6 percent of the mean pressure after 6 wave cycles), but then decayed. Thus,

at the lower pressures used in PCC4, both pulses were stable. The theoretical

predictions for this motor indicated very good agreement with the measured data. oth
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Figs. 23a-b. Comparison of measured and predicted pressure

perturbations at the fore-end, test PCC4, first pulse.
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Figs. 24a-b. Comparison of measured and predicted pressure
perturbations at the fore-end, test PCC4, second pulse.
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be stable and the analysis correctly predicted that the first pulse wo(,ld decay ratpi ly

and that the second pulse would grow initially and then decay slowly. The initial puse

amplitudes and waveforns were also accurately predicted. The measured date for

PCC2 pulse I demonstrated reflected wave behavior (from the area discontinuity (t th ,

" olr to thlat observed in response to the first pulse of test lCQ3.

This observed bh av'or vs (]goin correctly predicted by the analysis.

Before applying the nonlinear analysis to the prediction of nonlinear instability in

full scale motors, on additional laboratory scale motor comparison was conducted with

a inore conplex aind motor-like grain distribution than those employed in the previa,

tests. The propellant distribution for test firing 4 is depicted in Fig. 25. A pyro pulse r

(attached to the fore-end) generated a pulse at the time when 4', propellant bu(rned

back to a flush condition, with an amplitude of S.1% of the 9.897 MPa (1435 psi) lneon

pressure. The time evolution of the :neasured and predicted pressure oscillations (t the

fore-end are shown in Fig. 26. Excellent agreement is demonstrated between th

measured and predicted data. The initial pulse amplitude was predicted to be 5. 1% of

the inean pressure, in agreement with the measured value. After 15 wave cycles, tie

amplitude of both the measured and predicted waves was 6.2% of the mean pressure. In

addition, the neasured and predicted waveforfns are very similar. It should b-

mentioned that thme composition of the propellant in test 4 was slightly differcot than

that utilized previously. The propellant parameters utilized to predict the pressire-

time data for this case (re shown in Table 3.

In the laboratory scale tests discussed above, only sinall (±1%) insinhility indtced

mean pressure shifts were observed. The analytica! solutions for these Cedses olsn

predicted only snall shifts in mean pressure.
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Fig. 25. Propellant grain distribution, test 4.
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Figs. 26a-b. Comparison of measured and predicted time evolution
of pressure perturbations at the fore-end, test 4, second pulse.
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FULL SCALE MOTORS

An assessment of the validity of the present nonlinear instability model would not

be complete without examining its ability to predict nonlinear instabilily in full scalh

motors. Data from two motor firings were selected for use in the present comparison

study. Motor A rnd Motor B, as they will be termed, were development reduced smoke

motor designs. Both motors vere stable until pulsed; were pulse triggered into

sustained nonlinear instability; and exhibited DC shifts in mean pressure after pulsinl.

Details of the pulser designs utilized to pulse these motors were not available.

- Thus, predictions were obtained by varying the input mass flux until the experimentally

observed pulse amplitude was reproduced. As in the case of the baseline laboratory

scale motor, the parameters which control the characteristics of the pressure and

velocity combustion response as a function of frequency were varied to obtain the best

agreement possible. It should be recalled that the issue to be addressed in this study

was the capability of the present analysis to predict all of the nonlinear characteristics

observed in full scale motor instability data and not the capability to a priori predict

motor response to pulses.

Motor A

A number of different grain designs and propellants were tested during this motor

development program. The motor selected for this comparison study had 0 five point

gear grain configuration, and a grain length of 1.65 meters (65 inches). The propellant

utilized was an AP oxidized reduced smoke propellant containing a small armount of

stability additive. The motor was pulsed with a piston pulser two seconds into he firinq

when the chamber pressure was 10.69 MPa (1550 psi). The cross-sectional are l nnd
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Fig. 27. Motor A; axial variation of flow area and cumulative
burn surface area.
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Figs. 28a-c. Comparison of measured, corrected and predicted
timfe evolution of pressure oscillations at the fore-end, motor A.



cumulative burn surface area, at the time of pulsing, are plotted in Fig. 27. For the

sake of computational efficiency, certain small details of the grain distribution were

modified. A single fore-end mounted transducer (Kistler Model 603A) was used to

monitor the pressure oscillations. The transducer had a 0.25 cm (0.1 inch) coating of

RTV for thermal protection and a stand-off distance of 2.29 cm (0.9 inch). In its

mounted configuration, the transducer had a resonant frequency of about 6000 Hz.

The measured time evolution of the pressure oscillations following the pulse are

shown in Fig. 28a. Although not evident in this figure (DC pressure changes were

filtered out), the motor experienced a 10.9% increase in mean pressure (DC shift) as a

result of the pulse induced instability. The waveform of the pressure oscillations is

quite nonlinear, and is primarily a single traveling shock wave. The combination of a

shocked waveform, with its attendant large high frequency content, and the low

resonant frequency of the Kistler transducer in its mounted configuration, resulted in

transducer resonance (or ringing) and distortion of the true waveform. This

phenomenon is more clearly evident when the analog tape is speed-scaled before

* digitization and plotting. The presence of this ringing precludes the accurate

quantization of the wave amplitude, but hand correction for this effect (see Fig. 28b)

produced a wave history that is satisfactory for the present qualitative comparison

study.

The parameters shown in Table 4 were utilized as input data for the nonlinear

combustion instability model. The predicted time evolution of pressure oscillations is

shown in Fig. 28c. Excellent agreement between the measured and predicted data was

obtained. Both the predicted and measured oscillations grew from the initial pulse

amplitude of 3.4% to amplitudes between 22 and 24% after II to 13 wave cycles, and

decreased slightly afterwards. The predicted DC pressure shift ( %), and the

predicted wave shape, were also both in close agreement with the experimental data.
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During development work on Motor B, a number of motors were pulse tested to

determine their nonlinear stability. The motor selected for this study had a fore-end

finocyl grain configuration with three fins. The motor had a grain length of 166.4 cm

(65.5 inches) and a fin length of 55.88 cm (22 inches). An AP oxidized reduced smoke

propellant containing a burn rate retardant was utilized in this test. The motor was

;)ijlsed with a pyro pulser 2.78 seconds into the firing when the chamber pressure was

).38 MPa (780 psi). The cross-sectional area and cumulative burn surface area, at the

time of pulsing, are plotted in Fig. 29. Each motor was instrumented with two Taber

transducers for mean pressure measurement, three accelerometers, and a Kistler 606A

high frequency transducer located in the fore-end closure. The Kistler was recessed

about i.78 cm (0.7 inch) and was protected by a 0.25 cm (0.1 inch) coating of RTV. The

resonant frequency of the transducer was in the range of 5-10 kHz.

I

.4

It can be seen from the fore-end pressure oscillation history, presented in

Fig. 30a, that the instability data for this motor is significantly compromised by

transducer ringing. These results demonstrate the importance of keeping the

transducer resonance frequency as high as possible in future pulse testing of solid

inotors.

The time evolution of pressure oscillations for Motor B is more complex than that

of Motor A, and is characterized by the presence of multiple, variable amplitude shock

, aves. Thus, correcting the data for transducer ringing becomes fairly subjective.

'"levertheless, it is possible to approximate the true response by me-tally removing the

1hin spike-like top portion of each wave front. As in the laboratory scale motor firings,

I ie complexity and multiple shock wave nature of Motor B's pressure history is
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Fig. 29. Motor B; axial variation of flow area and cumulative
burn surface area.
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Figs. 30a-b. Comparison of measured and predicted time evolution
of pressure perturbations at the fore-end, motor B.
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attrihted to partial wove reflections fromn an internal area discontinuity in the

-Ii oI nl)r. In Motor [ (Fig. 29) the only sizeable flow area discontinuity is located

.= 1)rc .~<inrrtely one-third of tire way between the fore-end and the end of the groin.

Correspondingly, the multiple shock waves are spaced at intervals approximately equal

to one third of a full wave cycle. It should be mentioned, however, that while not

presented herein, existing data and analytical results show that multiple shock waves

con also be driven by propellant combustion, e.g., when the propellant transient

response is much higher at the second (or higher) longitudinal mode frequency than at

the fundamental mode.

The propellant parameters shown in Table 5 were utilized in obtaining the

unalytically predicted pressure oscillation history for Motor B shown in Fig. 30b.

Comparing Figs. 30a and 30b, it is noticed that the theoretical results qualitatively

reproduce the complex tertiary shock wave behavior present in the experimental data.

Ioth the experimental and predicted wave histories contain two relatively stronger

shock waves and one weak shock wave. In the predicted data, a repetitive pattern is

observed in which the weaker of the two dominant waves grows until it becomes the

lorqer shock wave. In the experimental data, the relative amplitudes of the two larger

shock waves vary in time, but not in as cyclical a manner. Relatively good agreement

between the predicted and ineasured wave amplitudes and DC pressure shifts was

" obtained. Both the neasured and predicted DC shifts were approximately 10% of the

,ineon chanber pressure (the DC shift in the experimental data was filtered out and is

not discernible in Fig. 30a).

2
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CHAPTER 4

EJECTA PULSE STUDIES

LXPERIMENTAL APPARATUS

The ejecta pulse test apparatus consists of a thick walled combustion chamber in

which either partial, or full length, cylindrical grains were loaded and firedl 0 . Two

ejecta pulsers were attached to the fore end of the chamber. A schematic of the ejecta

pulse test apparatus is shown in Fig. 31. The combustion chamber had an overall length

of 1.22 meters (48 inches) and an internal case diameter of 5.71 centimeters (2.25

inches). Nozzle entrance and exit angles were 450 and 15o, respectively. The partial

length cylindrical grains were partially recessed into the case. Thus, at some time

toward the end of the firing, a flush grain configuration was achieved. Prior to this

time, the grain represented an area constriction. After this time, the grain was

recessed relative to the case wall. Al predetermined times during the firing, the

pulsers ejected a sphere into the chamber which was carried out through the nozzle by

*i the flow of combustion gases. To simulate the range of material densities found in

combustion chambers, a series of tests were carried out using spheres made from RTV

rubber (utilized in most of the tests), nylon, Teflon, and steel.

The pressure oscillations in the motor were recorded at six axial locations using

Kistler 703 piezoelectric pressure transducers. The chamber sidewall was instrumented

with four close-coupled pressure transducers, one transducer was located at the fore-

end closure and one in the convergent section of the nozzle. The transducer ports were

nachined so that the transducer diaphragms were offset by 0.125 inch. This cavity was

potted with vulcanized rubber (RTV) which is utilized to provide thermal shielding
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for the pressure transducers. In its mounted configuration, the transducer had a

resonant frequency of ubout 65 kHz, as determined by shock tube tests. With this high

value for resonant frequencies, the amplification error should be less than 2 percent for

n 12 kHz signal.

Ejecta Trajectory

The prediction of the pressure pulse waveform that results from the transient

partial blockage of the nozzle (termed nozzle ejecta) requires calculation of the nozzle

constriction as a function of time. Therefore, it is the ejecta velocity as well as its

physical size that determines the pressure pulse waveform. The equation of motion for
du

the ejecta is F = m - where m is the ejecta mass, ue is the ejecta velocity, and F is

the force acting on the particle. For a particle whose density is large compared to that

of the gas medium, and when the fluid acceleration is low, the equation of motion is

written as:
m du Cd P(U-Ue)JU-UJA (25)

where u is the gas velocity, and cd is the drag coefficient.

The force acting on the ejecta is a combination of viscous drag and pressure

differences across the ejecta surface (termed pressure drag). At high velocities the

pressure drag is largely a result of flow separation which causes a non-uniform pressure

distribution over the surface of the body. Measured drag coefficients are usually

presented as a plot of total drag (viscous plus pressure) as a function of Reynolds

number. Schlichtingl I presented sphere drag data for both compressible and

incompressible flow. For incompressible flow, the drag coefficient is approximately

equal to 0.4 in the range of Reynolds numbers from 103 to 3 x I05. At the critical
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Reynolds number of 3 x 1o5, the drag coefficient drops sharply. Compressibility effects

act to increase both the drag coefficient and the critical Reynolds number. For Mach

numbers in the range of 0.8 to 4.5 and Reynolds numbers in the range of

2 x 105 to 9 x 105, the drag coefficient is insensitive to Reynolds number and its value

is approximately 0.65 to 0.75. Experimental data obtained during ejecta pulse tests

inply average velocities in the throat region of about 600 to 3000 inches per second,

depending on the ejecta density, initial injection velocity, and motor ,nean pressure.

With these values, the lReynolds number would be in the range of 2 x lo4 to 106. [his

range encompasses the critical Reynolds number for incompressible flow.

The existence of strong, mean flow pressure gradients in the nozzle may have a

significant influence on the drag force. Nevertheless, for the sake of simplicity, such

potential pressure gradient effects have not been considered in the present work and

only the conventional drag force was incorporated in the ejecta trajectory analysis.

Pressure measurements at the nozzle entrance were then used to estimate the

appropriate value of the drag coefficient. Details of the approximate analysis are

described later in this section.

F

Ejecta Pulse Modeling

The nozzle geometry during spherical ejecta passage is shown in Fig. 32, where;

A. is the nozzle entrance area, Ae, the ejecta area, At, the throat area, a, sonic

velocity, u, gas velocity, and , is the gas density.

A simple model for calculating the amplitude of the ejecta indt'ced pulse at the

nozile entrance plane was developed. ihe assumptions involved were: the flow in the

niozle is one-dinensional and isentropic and the ejecta only affects the instmoneols
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* Fig. 32. Reference areas for ejecta pulsing.
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nozzle throat area. As the ejecta enters the throat, a series of weak compression

waves propagate upstream towards the nozzle entrance slowing the flow. After the

maximum diameter of the ejecta passes through the throat, a series of expansion waves

propagate towards the nozzle entrance at a slightly higher velocity than the

compression waves. Using linear wave propagation theory, the ratio of the

", instantaneous pressure at the ." 77l ,..: .  p, to thc. initial undisturbed entrance

pressure, PI, can evntually be 'xm ,' 'i

p= IM )/(j4. M2)j (2y)/(yl) (26)
p1  4 1 1 24._

Thus, the instantoneoijs pressure i!, delermined once the nozzle entrance Mach number,

M, is known. In order to determine M, a quasi-steady nozzle behavior was assumed i.e.,

the instantaneous Mach number can be calculated using steady-state relations. The

initial undisturbed nozzle entrance Mach number is given by

( 1 2 2 (y+1)/2(y-1)
M= J[(1+YiL MI )(y )  (27)

where J = At/Ac is the initial undisturbed value of the nozzle constriction ratio. The

Mach number at the nozzle entrance plane during the ejecta passage is then given by

Eq. (27) with M I replaced by M and J by J(l-fb) (where fb is the fraction of the throat

area blocked at any instant). The quasi-steady nozzle assumption should be most

applicable to larger, slower moving ejecta. As the ejecta velocity increases, the quasi-

steady assumption leads to over prediction of the pulse amplitude.

Equation (27) is a transcendental equation for M as a function of J. However, if it

is assumed that 0.5 ( -I) M 12 is small compared with one (M I is typically on the order

of 0.1 and 1 .23), MI, and M can then be expressed as
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(-y+l)/(y-1)

M = J(-fb)(:l) (Y)(y)

Inserling Eqs. (28) into Eq. (26) and neglecting terms on the order of O.IJ, yields the

following expression for pulse amplitude

P__P. _ [(y+l)/2(y-1)

P1  P1  :-') J V (29)

with an isentropic exponent, ,equal to 1.2, Equation (29) becomes

(30)
-= 0.71 f JPi

Thus, this simple model predicts that the pulse amplitude is proportional to the product

of the initial constriction ratio and the fraction of the throat area blocked by the

ejecto, and provides a good basis for data correlation. Comparison of predictions

obtained utilizing this model with experimental data are shown later in this section.

1unerical Model

A second approach for calculating ejecta pulse amplitudes was developed by

modifying the nonlinear combustion instability analysis described in Part I. This

computer program, which solves the coupled nonlinear partial differential equations

that govern the one-dimensional, two-phase flow in variable cross-sectional area solid

rocket motors and the transient combustion of the solid propellant, was trodified to

accept a time-dependent Mach number boundary condition at the nozzle entrance.

In this approach, the ejecta trajectory is calculated as described previously. The

quasi-steady assumption was retained, thus, the nozzle entrance Mach number is given
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by Eq. (27), with J replaced by the instantaneous nozzle constriction ratio. The

program calculates the flow variables at interior mesh points using an advanced shock

capturing finite difference integration technique while the method of characteristics is

employed at the boundaries. Thus, at the nozzle entrance, the specified Mach number

boundary condition that describes effect of ejecta passage through the nozzle (i.e., the

generation of conpression and expansion waves) is conveyed to the combustion chamber

via a left-running (upstream) characteristic.

Since the nonlinear combustion instability analysis treats the whole problem (i.e.,

the tine evolution of oscillations in the motor, coupled with the propellant response),

this approach is not limited to the calculation of the ejecta-induced initial pulse

amplitude. It is also capable of calculating the waveform of the pulse and the resulting

motor behavior, i.e., growth or decay of the disturbance. The ability to model the

nonlinear response of solid rocket motors to pulsing had been demonstrated in Chapter 3

for low brisance, piston, and pyrotechnic pulsers attached to the head end of the

chamber. A comparison between predictions and experimental data obtained by ejecta

pulsing subscale rocket motors is presented in the following sections.

EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

Experinents

A series of motor firings was carried out using the previously described test

apparatus and istrumnentation. The results of nine of these tests are considered herein.

,-. AP-HTPB propellant grains with lengths varying from 8 to 48 inches, initial inside

diameter of 1.25 inches and outside diameter of 2.375 inches were tested. Spherical

ejecta of different materials were employed to study the effect of density variations.
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The materials consisted of nylon, robber, Teflon, and steel, having densities of 0.039,

0.040, 0.075, and 0.275 lbs/in 3, respectively. Ejecta size was also varied, resulting in

throat blockage ranging from 32 to 69 percent. The test conditions are summarized in

Table 6.

Pulse Duration - Ejecta Trajectory Model Evaluation

Tests 5, 6, and 7, in which materials of three widely different densities were

employed (nylon, Teflon and steel, respectively), provided an excellent means for

, evaluating the capability of the previously described approximate model to calculate

the ejecta trajectory (velocity) as it transits the throat. These tests also provided a

basis for assessing the effect of ejecta density variation upon the resulting pulse

amplitude and waveform. The initial pulsed waveforms measured at the nozzle

"" entrance and at the chamber fore-end closure in response to the first and second pulses,

are shown in Figs 33 and 34, respectively. The test results are summarized in Table 7.

*[ The pulse amplitude and duration listed in Table 7 refer to the initial disturbance at the

nozzle entrance. Later measurements of the pulse, after it has been reflected from

either the fore-end or the nozzle end, show that at that time the pulse has

approximately doubled its initial amplitude. This is a consequence of the reflection

process for a traveling wave.

Using the previously described methodology, ejecta trajectory calculations were

* performed for two assumed values of ejecta initial velocity, and three different values

of the drag coefficient. The calculated pulse durations (time for ejecta to pass "he

throat plane) are tabulated in Table 8. From a comparison of Tables 7 and 8, it is

( 'rrcluJded that: pulse duration is only weakly dependent upon drag coefficient and

*' initial ejecta entrance velocity; and that a reasonable choice of these parameters
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TABLE 6. Compari son of Measured a rd P red ic ted Pul se Ampl itudes a t the Head-End

Closure

Test No. Grain Length(In.) Ejecta Size(ln.) Fraction Blocked Ejecto Material ChamberPressure(Psi)

19.7 .4375 .364 RTV 990
2 :6 .4375 .45 RTV 832

3 12 .375 .482 RTV 993
4 8 .375 .726 RTV 900
5 16 .4375, .60 .369, .694 NYLON 905,877
6 16 .4375, .60 .369, .694 TEFLON 805,856

7 16 .4375, .60 .369, .694 STEEL 751,811
8 32 .5 .2S24 TEFLON 1085

9 48 .872 .S7S T EFLO0N 1200
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Fig. 33. Measured pressure perturbations at the fore-end and aft-end
closures induced by the first pulse, tests 5-7.
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Menua Pulse Pulse

Test Pulse Ejects Density Diam. f (max) Press. Amp. Duration
No. Kat'l (Ibs/in

3
) (inches) b (psi) (psi) (millisecs.)

$ 1 Nylon 0.039 0.4375 0.369 905 15.0 0.34

2 Nylon 0.039 0.60 0.694 877 39.7 0.59

6 1 Teflon 0.075 0.4375 f).369 805 14.9 0.49
2 Teflon 0.075 0.60 0.694 856 38.4 0.74

7 1 Steel 0.275 0.4375 0.369 751 17.8 0.88
2 Steel 0.275 0.60 0.694 811 34.4 1.33

Table 7. Ejecta density variation tests.

v - 100 in/sec v -300 in/sec
Test Ejects Ejects e e

No. Densit; Diam. C0  Duration CD  Duration

(lb/in ) (inches) (millisecs) (Milttsecs

S 0.039 0.4375 0.5 0.36 0.4 0.40

0.6 0.34 0.5 0.36
0.7 0.32 0.6 0.12

0.60 0.5 0.54 0.4 0.5R
0.6 0.50 0.5 0.52
0.7 0.46 0.6 0.50

6 0.075 0.4375 0.5 0.52 0.4 0.56
0.6 0.48 0.5 0.50
0.7 0.44 0.6 0.46

0.60 0.5 0.74 0.4 0.78

0.6 0.66 0.5 0.70

0.7 (.64 0.6 0.66

7 0.275 0.4375 0.5 o.q9 0.0.6 0.90 n.5 08

0.7 0.92 0.6 0.87

0.60 0.5 I 0.4 1.32
0.6 ,.2R 0.5 1.22

".- 0.7 1.16 0.6 I.iA

S
O
.

Table 8. Computed pulse durations.
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.751 C D=0. 6, v e 100 in/sec:

fb(max)=0.369

0 50 Tef lon
.50 NylonSte

CI)

Time. Millisecs
Fig. 35. Computed fraction blocked vs. time, first pulse, tests 5-7.

C =0.6, v =100 in/secD e

fb (max)=0.694

.75 Nylon Teflon

0

pq.501

S.25,

.8 1.2
Time, Millisecs

Fig. 36. Computed fraction blocked vs. time, second pulse, tests 5-7.
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results in calculated pulse durations that are approximately correct. The resulting

pulse amplitude is also relatively insensitive to ejecta velocity (except, as will be

pointed out later, for very fast ejecta velocities). Thus, efforts to improve upon the

present simple ejecta trajectory prediction methodology do not appear to be warranted.

For present purposes, the remainder of the ejecta trajectory calculations were

carried out using an entrance velocity of 100 inches/second arid a drag coefficient equal

to 0.6. Using these values, the fraction of throat area blocked was calculated. Figures

35 and 36 show the variation of fraction of throat area blocked as a function of time for

the first and second pulses of tests 5-7, respectively. The ejecta velocity increases

monotonically with time as it passes through the nozzle (barring collision with the

nozzle walls). Thus, the time interval from initial blockage to maximum throat

blockage is longer than the time required to return from maximum blockage to the

original cleared throat area. Hence, the initial waveform of the ejecta pulse, measured

at the nozzle entrance, should have a shallower front (rise) and a steeper back (decay).

The initial measured waveforms all have this characteristic (which is especially evident

with the slower steel balls); however, nonlinear wave propagation effects (i.e.,

steepening, viscosity, viscous wall losses, etc.) rapidly cause the wave shape to change

to a steeper wave front and a shallower back.

IVVALUATION OF PULSE AMPLITUDE PREDICTION MODELS

Serni-Etnpirical Model

rhe experimentcl ejecta pulse test results that are shown in Table 7 were also

, sed to examine the validity of the previously described pulse amplitude prediction

models. Since Eq. (30) predicts that the pulse amplitude is proportional to the product

fbJ, the measured pulse amplitudes were plotted as a function of fbJ (Fig. 37). The
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data fall below the theoretically predicted line (6p/p 0.71 fbJ), and is reasonOhly

correlated by 6p/p 0.6 fbJ . The over prediction of pulse amplitude is most likely a

result of imposing a quasi-steady approximation in the model development. As

expected, the greatest deviations from the predicted values are for the smallest,

fastest moving, ejecta. The two lowest pulse amplitudes shown in Fig. 37 (having the

largest deviations) were obtained using smaller rubber ejecta injected into the motor at

higher velocities than the other ejecta (larger quantities of black powder were utilized

in the ejecta pulser unit). The measured pulse durations of these ejecta at the nozzle

entrance were only 0.3 milliseconds. Conversely, the two nylon ejecta data points at

fb J values of 0.035 and 0.0435 were obtained for larger (slower) ejecta in a 3.0 inch

diameter test motor. Until a more accurate, fully transient, two dimensional model

describing ejecta motion through a nozzle is developed, the relation 6 p/p = 0.4 fb.)
1

should probably be used instead of the aforementioned relation when ejecta pulse

durations are expected to be in the range of 0.2 to 0.4 milliseconds.

In full scale motors, the larger ejecta necessary to produce reasonable pulse

amplitudes should have dwell times on the order of a millisecond, and the relation

6p/p = 0.6 fbJ should yield reasonably accurate predictions of initial pulse amplitude.
1

Numerical Model

The task of defining pulse amplitude is not as straightforward as it seems since

the amplitude of the pulse varies with axial location in the motor. Thus, simple

correlations of predicted and measured "pulse amplitude" values cannot tell the whole

story. It has already been mentioned that when a traveling pulse reflects from the

head-end closure, its amplitude at the head end is approximately double its amplitude at

the middle of the chamber. Several other physical processes involved in wav
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Fig. 37. Ejecta pulse amplitude vs. fraction blocked times constriction
.. ratio.
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propagation can affect the measured pulse amplitude. One such effect is the formation

of a system of multiple shock waves that results from the partial reflection of the pulse

from area or grain discontinuities or the continuous partial reflection/transmission of a

pulse traveling in a variable cross section area chamber.

Since the numerical model properly trents the operative nonlinear wave

propagation mechanisms, it can treat the p tke cimplitude prediction problem without

- the necessity of defining a single value for "pulse amplitude." In addition, being a

complete nonlinear combustion analysis, the nu nerical approach can also be used to

predict the motor response to ejecto p,Isinq (see next suhsection).

Although the present nunerical model has the above advantages, it still employs a

quasi-steady assumption in specifying the time dependent Mach number boundary

condition at the nozzle entrance. Thus, it was expected that some empirical correction

of the boundary condition would be necessary to achieve accurate pulse amplitude

predictions. The calculated results bore out that expectation. When the fraction of

throat area blocked as a function of time was empirically modified, using the results

shown in Fig. 37 as a guide, the predicted and measured pulse amplitudes were in

excellent agreement, as shown in Table 9. The results also verified the ability of the

analysis to predict the observed waveforms, and its ability to correctly predict the

change in pulse amplitude and waveform as it traverses the combustion chamber (over

several wave cycles).

Motor 'Iesponse to Ejecta Pulsing

Triggered nonlinear instabilities were observed in all of the tests shown in

Table 9. In tests I, 2, 3, 8, and 9, the first ejecta triggered the instability, while in
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TABLE 9

Comparison of Measured and Predicted Pulse Amplitudes
(in Percentage of Mean Pressure)

at the Head End Closure

Head End
Test Number Measured Predicted
I first pulse 3.4 3.5
2 first pulse 3.6 3.7
3 first pulse 1.7 1.8
4 first pulse 1.6 1.6

5 first pulse 3.9 3.8
5 second pulse 9.6 10.8
6 first pulse 4.4 4.7
6 second pulse 9.7 10.2
7 first pulse 5.9 6.1
7 second pulse 9.2 10.3
8 first pulse 6.6 7.8
9 first pulse 19.9 22.7
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tests 4, 5, 6, and 7 the motor was stable in response to the first pulse but unstable in

response to the second pulse. It has been observed that the amplitude of the

oscillations increased as the grain was lengthened. Small increases in mean chamber

pressures (DC shifts) were observed whenever the motor sustained nonlinear instability.

The DC shift also increased in magnitude as the length of the propellant grains was

increased. In addition, significant changes in the oscillations waveform were observed.

As the grain was lengthened, the waveform became narrower and steeper (both front

and back). Thus, it was concluded that longer grains are capable of sustaining waves

with considerably more high frequency content than shorter grains.

The nonlinear combustion instability analysis was utilized in Chapter 3 to predict

the response of solid rocket motors to piston, low brisance, and pyrotechnic pulsers.

Excellent agreement between the measured and predicted motor response was

demonstrated. As explained thereirh, present deficiencies in combustion response

modeling require that some of the parameters in the transient combustion models be

empirically adjusted to best fit the experimental data. In the piston and pyro pulsing

investigation, the constants were determined from one test and were used successfully

in predicting the results of five other pulses. The motors and propellant used in this

previous study were the same as used herein, except that the grain lengths were not

significantly varied (8 to 9 inches), and the motors were pulsed at considerably higher

chamber pressures (I500-1900 psi). Results obtained using the nonlinear model to

predict motor response to ejecta pulsing are discussed below.

Figures 38 to 41 show comparisons between the predicted and measured head-end

pressure oscillations for tests I, 6, 7, and 9. Since the ejecta tests used the same

propellant as the earlier piston and pyro pulser tests, the initial ejecta colculations

were node using the same combustion response parameters. The final solutions shown
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in these figures employed the same values for the parameters that determine the

pressure coupled response. Nevertheless, as expected, the velocity coupled response

function values had to be varied, as the grain length varied, in order to achieve best

agreement with the data. The ad hoc velocity coupling formulation used in the present

analysis does not model the governing fundamental physical mechanisms (which remain

to be identified). Thus, the fact that it cannot predict the proper variation of velocity

coupling with grain length should not be surprising.

The velocity coupled response functions used in the predictions ranged from 2.9 to

4.6. In general, the longer the grain, the lower the value of Rvc used. In Chapter 3, a

value of Rvc equal to 3.5 was used with 8-inch long grains; however, the chamber

pressure in the earlier tests was about double that of the present tests.

In test I, the motor was driven unstable by the first pulse. At this time in the

firing, the partial grain is not flush with the chamber wall. As discussed in Chapter 3,

the area discontinuity causes multiple reflections of the primary shock wave as it

. traverses the chamber. Figure 38 shows that the analysis predicts the observed

occurrence of multiple waves (one reflection before and one reflection following the

primary shock wave), and also shows the ability to predict the observed growth rate of

the oscillations.

Figures 39 and 40 for tests 6 and 7, respectively, demonstrate the effect of ejecta

deniity on motor response. Both motors were stable in response to the first pulse and

unstoble in response to the second pulse. As previously discussed, both the Teflon (test

(i) and steel (test 7) ejecta produced approximately the same initial pulse amplitudes (at

the noiile entrance), however, the lighter Teflon ejecta produced a much narrower

pulse than the steel ball. The Teflon induced pulse is already shocked by the time the

2 6 9
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Fig. 38. Com'parison of measured and pre~dicted pressure
pertUrbations at the head-end, test 1.
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puj reaclies the head-end of the motor. As time progresses, this pulse slowly widens

and decays in amplitude until limit cycle conditions (amplitude and waveform) were

achieved. The response to the steel ejecta is considerably more complex. The steel

induced initial waveform is almost a pure fundamental mode disturbance with very

little higher harmonic content. The transformation to a steep fronted wave takes about

nine wave cycles (during which time the amplitude continuously decays). Only when

the wave becomes a traveling shock does it begin to grow. As the wave grows it

changes shape, and eventually reaches approximately the same limiting amplitude and

waveform as the teflon pulsed motor.

The predicted behavior for tests 6 and 7 (shown in Figs. 39 and 40) closely

parallels the observed motor response. The initial pulse amplitude and waveform, the

tine evolution of the pressure wave and limiting amplitude are all correctly

reproduced. The ability of the analysis to correctly reproduce the complex behavior of

test 7 was particularly gratifying.

Figure 41 shows the pressure data neasured at the head end for test 9 (full length

grain). The first ejecta produced a narrow pulse, with a measured amplitude at the

head end closure of 250 psi. This pulse initiated a sustained instability in the motor.

The waveform development in this case was distinctly different from that in notors

with short partial length grains. The narrow initicl pulse became even a narrower,

spike-like wave, follI)wed by a small second compression wave. The full length grain

also produced a substantially larger mean pressure in:rease (DC shift) than the partial

length grains. The DC snift of about 10 percent is not apparent in the experimental

data because the DC pressure component of the transducer signal has been filtered out.

The DC shift is apparent in the calculated results, which in addition to predicting the

observed mean pressure shift, also correctly predicts the initial and the time evolution

of the amplitude, waveforn growth, and harmonic conteni.
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Fig. 39. Comparison of measured and predicted pressure
perturbations at the head-end, test 6, second4 pulse.
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Fig. 40. Comparison of measured and predicted pressure perturbations

at the head-end, test 7, second pulse.
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Fi g. 41. Comparison of measured and Predicted pressure
perturbations at the head-end, test 9, second pulse.
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Although not shown herein, good agreement was also obtained between the

predicted and measured results for tests 2, 3, 4, 5, and 8. In all cases where the first

pulse was stable and the second unstable (tests 4, 5, 6, and 7), the analyses correctly

predicted that behavior without any need to adjust the combustion response parameters.

It should also be mentioned that tests 6 and 7 are two of the best examples, to date, of

experimental evidence supporting previous analytical predictions that the limit cycle is

independent of the characteristics of the initiating disturbance.

,27
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CHAPTER 5

CONCLUSIONS

Bnsed on the results obtained in this investigation, it was concluded that the

original objective of developing a model rnpable of the accurate, a priori, prediction of

rmass and energy flow rotes produced bv four diff rent types of laboratory pulsers and

the waveforms produced by these pulsers inside a chamber (i.e., motor response to

pulses produced by these pulsers), was achieved.

1% Ballistic models of the pyro, low brisance, and piston pulsers were developed

utilizing a simple lumped volume treatment. The mass and energy flow rates calculated

using these pulser performance models are utilized as boundary conditions for the

chamber flow problem, which is solved using a modified nonlinear combustion instability

model. The ability of the combined pulser/chamber flow models to predict the pulsed

waveforms (amplitude and harmonic content) in a closed chamber filled with cold gases

(nitrogen and helium) was demonstrated in this report. Excellent agreement between

the measured and predicted pressure waves in the chamber was demonstrated even

though a simple one-dimensional inviscid analysis was utilized to model a complex two-

dimensional viscous process.

Both the experimental and analytical results demonstrate that the pulse

characteristics are pri.norily governed by the mass flux rate from the pulser into the

chamber. The pulse waveform was very similar to the shape of the respective pulser

mass flux curves for each of the three types of pulsers tested.

On the basis of the comparisons with motor firing data carried out to date with

the pyro, low brisance, and piston pulsers, the following conclusions have been drawn:
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The ability of the developed pulser/chamber model to accurately, a priori, predict

both initial pulse amplitude and waveform, under actual solid rocket motor firing

conditions, has been demonstrated.

When the parameters which control the pressure and velocity coupled propellant

response were empirically fixed on the basis of a single "baseline" pulse test, the

nonlinear model was shown to be able to quantitatively predict the measured nonlinear

stability of five other pulse tests with the same propellant, but with varying grain

geometry, operating conditions, pulser types, and pulse amplitudes. Thus, the present

analysis should provide a useful preliminary design tool for predicting the relative

nonlinear stability of candidate motor design variations. With further advances in

combustion response modeling, the nonlinear model should eventually provide an a priori

means for quantitatively predicting the nonlinear longitudinal stability of solid rocket

motors.

In view of the known deficiencies in the combustion response models utilized, the

ability of the analysis to simultaneously match measured wave amplitudes, waveforms,

DC shifts, and in many cases, growth (or decay) rates, was satisfying, although

somewhat surprising. It seems likely, therefore, that the present combustion models at

least contain all of the essential factors which produce the nonlinear behavior that can

be attributed to the propellant response.

A series of ejecta pulsed motor firings was conducted in simple laboratory scale

motors with full and partial length cylindrical grains. Ejecta size and density were

varied to provide information on the effect of these parameters on pulse amplitude,

pulse waveform, and the ability to trigger nonlinear instability. Each of the motors was

* pulsed twice, and all were triggered into sustained nonlinear instability.
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A simple trajectory analysis was developed to calculate the velocity of the ejecta

as it transits the nozzle. The model considers only the draq force on the ejecta ard

neglects effects due to gas flow pressure gradients and ejecta-flowfield interactions.

Relatively good agreement between predicted and ,neasured pulse durations wns

obtained. Parametric calculations demonstrated that the pulse duration is only weakly

dependent on initial ejecta velocity and the value used f3r the drag coefficient; thus, an

effort to develop a more complete model of the ejecta dynamics does not appear to be

warranted.

Two models for predicting ejecta pulse a:nplitudes were developed. A simple

model based on linear wave propagation theory and the assumption of quasi-steady

nozzle behavior, and a numerical model which utilizes the quasi-steady nozzle

assumrnption to provide a nozzle entrance boundary condition for a comprehensive

.. nonlinear instability analysis. The simple model is limited to the prediction of the

ejecta induced pulse amplitude at the nozzle entrance plane. The numerical inodel is

more complete and can predict the initial pulse amplitude and waveform at all locations

in the motor (not just the nozzle entrance plane) as well as the temporal and spatial

evolution of the pulse, i.e., the motor response to ejecta pulsing. The simple method

predicts the pulse amplitude to be proportional to the product of the fraction of the

nozzle area blocked and the initial constriction ratio of the nozzle 6 p/p = 0.71 fbJ. A

semi-enpirical expression of the form 6 p/p = 0.6 fb J yields a good correlation of the

data, supporting the validity of the analysis and demonstrating that the quasi-steady

assunption leads to over prediction of pulse amplitude. As ejecta size decreases,

velocity increases and pulse duration decreases. When pulse duration is decreased to

the range of about 0.2 - 0.4 milliseconds, the data is better correlated by

6 p/p= 0.4 fbJ. Comparisons with data verified the ability of the analysis to predict

the observed waveforms, and its ability to correctly predict the change in p, lse

amplitude as it traverses the combustion chamber.
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The test results demonstrated that both pulse amplitude and pulse duration

influence the ability of a pulse to trigger instability (higher amplitudes and shorter

pulse durations enhance triggering potential). The observed greater susceptibility of

motors to triggering at later burn times agrees with many other previous observations.

Oscillation amplitudes, DC shifts, and amount of high frequency content were all

observed to increase with increase of grain length (in a motor of fixed length). The

existence of area discontinuities, when the partial length grains are not flush with the

case, results in multiple wave reflections, which, in general, make it more difficult to

trigger such configurations into instability.

Many of the complexities observed in unstable motor oscillations are caused, or

strongly influenced, by discontinuities in the grain geometry. This is especially true for

multiple shock wave behavior induced by partial shock wave reflection at area

discontinuities.

The wide range of waveforms and nonlinear behavior observed in the experiments

result from interactions between a number of complex nonlinear physical phenomena.

Comparisons between predictions obtained with the present comprehensive nonlinear

instability analysis and the experimental data indicate that the model is capable of

predicting all of the observed characteristics, i.e., pulse amplitude and waveform,

waveform evolution, growth rate, DC shifts, waves that decay and then grow (and vice

versa), etc.

Although the present analysis appears to contain all of the essential factors

necessary to produce the observed nonlinear behavior of solid rocket motor instabilities,

the results of the present comparison study, in which grain lengths were systenatically

varied, point out deficiencies in the existing modeling of the effect of acoustic velocity
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oscillations on the combustion response of the propellant (velocity coupling). The

present predictions require empirical adjustment of the velocity coupled response to

obtain the best possible agreement. Further progress in the understanding and modeling

of the physical mechanisms which govern the combustion response of solid propellants

must be accomplished before quantitative, a priori, stability predictions can be

obtained.

It is strongly recommended that great care be taken in future inotor pulse testing

to ensure that the piezoelectric pressure transducers are mounted and protected in a

manner that will keep the resonant frequency of the transducer as high as possible.

Resonant frequencies above 60 kHz should be sought in order to keep transducer

"ringing" effects from significantly compromising the integrity of the data.

Additional comparisons with motordata should be carried out to further evaluate

the ability of the present analysis to predict the effect of grain design, pulse type and

* pulse amplitude, for a wider range of propellants, motor operating conditions, and pulse

characteristics than contained herein.
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NOMENCLATURE

a gas only, speed of sound

A vent area

Ap piston area

A I  chamber area

charge weight

Cd orifice coefficient

Cp isobaric heat capacity

Cs  subcritical flow correction

cv isochoric heat capacity

- Cw  sonic flow coefficient

" dv  vent diameter

* -, energy venting rate into the chamber

f fraction of burning pellets remaining in pyro pilser

- F pyro pulser coefficient, RT o

fv fraction vent area opened by piston travel in brisance pulser

. g gravitational constant

, K a parameter defined in Eq. 5

m mass of gas in combustion chamber

I'b mass burning rate of pyro charge

,ni mass venting rate into chamber

Ino mass flow rate out of pulser
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n charge burning rate exponent

N number of charge pellets in chamber

.4 p pressure

Pb bore pressure

Pc motor chamber pressure

R specific gas constant

rv vent radius

s web fraction burned

rate of change of web fraction burned

t time

T gas temperature

Ti temperature of the combustion products entering the breech

T0 isochoric flame temperature

u piston velocity

u l gas velocity at chamber fore-end

v, Vo  volume, and initial volume, respectively

x, xs  piston travel, and total stroke, respectively

y isentropic constant

qdensity

Subscripts

I - mesh point No. I located at the fore-end

SI'- origin of left running characteristics reaching point No. I.
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